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A. SUMMARY

This section presents a summary of the study program on a Study of Mass Data Storage for Rocket

Engine Data, conducted by Honeywell, Inc. for NASA Lewis Research Center under contract

NAS3-25714. The work was performed by Honeywell Systems and Research Center,

Minneapolis, MN, with Rocketdyne Division of Rockwell International Corp., Canoga park, CA,

as a subcontractor. The work was performed over the period from September 1989 through May

1990.

This summary includes the objectives and scope of the work and the results obtained. It

emphasizes the conclusions reached during this study program. The processes and reasoning

leading to those conclusions are presented in following sections.

The objectives of this program were:

To recommend a candidate mass data storage (MDS) technology development for rocket

engine health monitoring and control (HMC).*

To develop a project plan and specification (PPS) for the technology development.

The scope of the work included four defined tasks:

I

I*

II.

III.

IV.

Program Management

Development of HMC MDS Requirements

Survey of MDS Technologies

Development of MDS HMC Project Plan and Specification (laPS)

Task I included management to ensure successful completion of the work within the constraints of

the budget and available time.

Task II included a review of current MDS technology for HMC. During Task I/, we identified and

analyzed the requirements and approaches to MDS, determined limitations and critical areas, and

developed a weighted prioritization for the various requirements. Two of the most important

* Acronyms will be defined the first time that they are used in this document. For reference, a

listing of acronyms is compiled in the Appendix.
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requirements were the total data capacity, determined to be 3.3 G bytes for a thr_-engine vehicle,

and the recording rate, determin_ to be 23.2 M bits/second, also for a three-

During Task TIT,we surveyed and analyzed both the current state-of-the-art MDS technologies and

also new developing concepts for MDS. In the survey, we included a variety of optical

approaches, plus electronic and magnetic techniques. We rated each technology with respect to

each of the requirements defined in Task II and established a scoring matrix for the technologies.

The result of this procedure led to a recommendation for the best candidate for technology

development.

Specifically, the recommendation was optical disk technology, with emphasis on increasing

capabilities in the areas where the technology can be upgraded to meet the defined requirements.

The technology development should thus emphasize factors like increase of recording rate, increase

inpackingdensityoruseofmultipleelementwritingheads.

In addition, because of rapid advances in so-called digital paper, a related optical recording

technology, we suggested that a second technology development be undertaken, ff funds are

available. The second program would emphasize advances in digital paper systems.

InthefinalTask IV,we developeda PPS forthetechnologydevelopment.ThisPPS isbasedon

theresultsoftheearliertasks.Itincludesa work breakdown structure,i.e.,dcf'mitionofa setof

taskstodevelop,test,analyzeand demonstratea proofofconcept(POC) model forthetechnology

development.Italsoincludedestimationofa levelofefforttocompletethePOC.

The criticalissueaddressedinformulationofthePPS was theneed toincreasetherecordingrate

by aboutone orderofmagnitudeabove thecurrentstate-of-the-artforopticaldisksystems.The

specificconceptdefinedforthePOC demonstrationincludedthefollowingfeatures:

Write-onceread-mainly(WORM) _cording media ina bandedformaton a two-sidedlO-

inch-diameterglassdisk.

Use of 780 nm laser diode sources.

Data spaced 1.3 lain center-to-center along a spiral track within a band, with 1.6 lain

between adjacent loops of the spiral.
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• Use of current focus/tracking servo controls.

Development of heads incorporating four laser sources, two for writing, and two for direct

read after write (DRAW).

We estimate that this development could be performed over a 20-month period, beginning January

1991, and would r_uire 13058 person-hours (with a labor mix of senior engineers, junior

engineers and technicians), plus $174K of materials.

We also developed a PPS for an alternate program of reduced scope, which would emphasize

modification of a currently available optical disk memory unit by addition of a 4-source laser head.

Tlfi_s would not meet the full capacity requirement, but would dcmons_'ate the most important

advances needed to achieve the increase in recording rate.

This development could be carried out over a 20-month period, and would require 8036 person-

hours of labor plus $201K of materials.

In conclusion we have developed a specific recommendation for optical disk technology

development, leading to a POC model. The emphasis would be in writing head technology

development leading to increased data recording rate. The objective would be to achieve an order

of magnitude increase in r_cording rate on a single optical disk system.
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B. INTRODUCTION

Health monitoring and control (HMC) represents an important technology for determining the

condition and performance of rocket engines. HMC utilizes the outputs of many sensors operating

at high data rates, and therefore generates large amounts of data which arc recorded and stored for

analysis and evaluation after a flight. Thus, mass data storage (MDS) technology is requireat to

record these large amounts of data. Cmrent approaches for onboard MD$ utilize magnetic tape

recorders, which were developed many years ago. In recent years there have been significant

advances in MD$ technology. The use of these more advanced technological approaches could

improve the collection and availability of the HMC status information. The program described in

this report defines technology which can increase the health evaluation productivity for rocket

engines, especially the space shuttle main engine (SSME), by providing increased storage capacity

and functionality.

In response to the need for advanced MDS for HMC, this program had as its objective the

development of recommendations and a project plan and specification (CPPS) for the best

candidate for technology development to meet the requirements for MDS for rocket engine HMC.

The process by which this objective was met included:

Generation or prioritized requirements for HMC.

Performance of a survey of state-of-the-art technology for collecting critical mission flight

data in a hostile environment to determine SSME performance and to increase engine health

evaluation.

Combination of the results of the survey with the prioritized requirements in order to

generate a recommendation for the best candidate for NASA development for HMC MDS.

Generation of a set of tasks required to carry out the technology development.

In this program, Honeywell, as prime contractor, was strongly aided by Rocketdyne Division of

Rockwell International Corporation, as a subcontractor. In particular, Rocketdyne contributed to

the generation of requirements for HMC and to the definition of environmental requirements.

The work in the program was organized into four tasks:

4

Do¢ M_llt



I. Program Management

II. Development of MDS Requirements for HMC

III. Survey of MDS Technologies

IV. Development of a Project Plan and Specification for MDS Technology Development

The fn'st task involved management of the contract to ensure successful completion within cost and

schedule. It utilized Honeywelrs computerized project status reporting system and ran

concurrently throughout the program with the other tasks.

The other three tasks represented the technical work carried out under the program. They were

carried out in order sequentially, with each task drawing heavily on the results of the preceding

task(s). The technical work was accomplished over a nine-month period from Septcmber 1989

through May 1990.

In Task II on development of requirements, we reviewed the current technologies for HMC MDS,

identified and analyzed the requirements and defined and prioritized the critical areas and

requirements.

The subtasks in Task II included:

• Summary of MDS technology now in use for HMC.

• Evaluation of its effectiveness.

* Definition of critical requirements and limitations.

• Prioritization of requirements.

Task IIconcluded with a teleconferencereview ofthe taskwithNASA pea'sonnelin January 1990.

The work in Task IT[emphasized surveyand analysisof MDS technologies,includingboth current

and newly developing concepts and approaches. The surveyincludedopticaltechnologies,

especiallyopticaldisks,holographicsystems,fiberopticsystems,opticalcardreadersand digital

paper. We alsoincludedmagnetic technology (disksand tape)and elecn'onictechnology

(semiconductors)inorder toensurea complete evaluation.We foldedtheresultsof the survey

together with the prioritized requirements generated in Task II in a matrix format in order to obtain

a quantitative ranking of the technologies for MDS applications. As a result, we generated a



recommendationof opticaldisk technology as the best candidate for NASA investment for future

MDS for I-IMC.

The subtasks in Task I]I were:

Compilation and analysisof state-of-the-artMDS technologies.

Computation and analysisof new conceptsand technologies.

Development of a recommendation fortechnologydevelopment.

Task IIIculminated with a telcconferencereview with NASA personnelinMarch 1990.

Task IV involved development of a PPS for the recommended technology development. It

involved generation of a specific recommendation for a proof-of-concept (POC) demonstration,

along with a work breakdown structure to accomplish this.

Subtasks in Task IV were:

Generation of the technology concept.

Compliance with operating environment specifications.

Compliance with HMC MDS requirements and specifications.

Development of POC requirements and specifications.

Generation of tasks to develop the POC.

Determination of required level of effort and costs.

Task IV culminated in a final review conducted at NASA Lewis Research Center on 14 June 1990.

The nextsectionwilldescribethe work and resultsfrom Tasks II,rrIand IV in detail.Although

Tasks IIand IIhave been reportedearlierinseparatereports,theywillbe fullydescribedherein

ordertomake thisfinalreporta complete descriptionof theprogram.
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C. TECHICAL DISCUSSION

This section describes the details of the work performed under contract NAS3-25714, a study of

Mass Data StorageTechnology farRocket Engine Data, by Honeywell Systems and Research

Center,Minneapolis,MN. The program had theobjectiveof developinga recommendation and a

program plan and specificationfarthebestcandidate(s)fortechnologydevelopment farMDS far

HMC.

The program had fourmain tasks:

• Program management to ensuresuccessfulcompletion withincostand scheduleconstraints

• A review ofcun'cntdatastoragetechnology,leadingtodevelopment and priaritizationofMDS

requirements

• A surveyand analysisof currentand new MDS technologies,leadingto a recommendation for

technologydevelopment

• Generationof a program planand specificationfortherecommended concept

This section reviews the technical tasks (i.e. the second, third and fourth of the above tasks) in

sequence,presentingtheapproach and methodology used ineach taskand the conclusionsreached

ineach case.

C-1. Definition of Requirements

This subsection presents a summary of the conclusions of Task II, the development of

requirements for MDS for HMC. In this work, we reviewed cun'ent data storage technology used

in the Space Shuttle Main Engine (SSME) performance and health monitoring far both flight and

ground testing missions. We identified and analyzed the requirements, approaches and methods

for MDS and determined limitations and critical areas for current MDS approaches.

The work inthistaskreliedheavilyon datainputsfrom Rocketdyne, actingas a subcontractorto

Honeywell on thisprogram. Informationprovided by Rocketdyne includedthefollowing

documents and communications:

z

RSS-8561 SSME STRUCHJRAL LOADS CRITERIA

RC1493 CONTROLLER, SPACE SHUTH._ MAIN ENGINE, PROCUREMENT

SPECIFICATION



RCi494 INTERFACECONTROLDOCUMENT,CONTROl.IS.R/ENGINE AND GROUND

SUPPORT EQUIPMENT

TECHNOLOGY TEST BED ENGINE TEST PLAN (DRAFT, F_.X_RPTS)

M_CN:WB/I/029 (UNTITLED, EXERPTS)

SPECIFICATION CODE IDENTIFICATION NO. 03953, Environmental Requirements and Test

Criteriafor theOrbiter Vehicle

Letters and Communications:

14 November 1989, Letter on Rockctdyne Subcontract, Submittal for Mass Data Storage, Ian

Cannon

FacsimileTransmissions,12 December 1989, 21 December 1989, and February 7, 1990

Telephone Conference,12 December 1989

Using the input from Rocketdyne, theHoneywell personnelhave definedand prioritized critical

areas and requirements relative to SSME engine environments. The conclusions based on this

work were used as inputs for Task ITI, the sw'vey of MDS requirements.

The remainder of thissub sectionisorganizedasfollows:

Sub sub section C-1 a.

Subsub section C-lb.

Subsub section C-lc.

Subsub section C-ld.

Review of Present Day MDS Technology for HMC

Analysis of the Pl'csent MDS Approach

Requirements for HMC

Priorifization of O'itical Areas and Requirements for HMC

C-la. Review of PresentDay MDS Technology forHMC

The present MDS system records both analog and digital data on two separate data recording units,

the Modular Auxiliary Data System (MADS) and the Mass Memory Unit (MMU), rcspe_vely.

The MMU is a rnagnctic tape unit manufactured by Odetics. There am two units on each shuttle.

All critical data arc recorded three times on each unit. If the fast unit fails, one switches to the
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second; then if the second fails, one switches back to the first. The performance of this unit

exceeds the expected life.

The MMU is a sealed unit under a positive pressure (minimum 3.28, maximum 18.0 PSIA). The

details of the (3defies drive mechanism are proprietary but it is called a "delta drive", delta because

of the triangular set of drive belts/pulleys which are redundant in that ff one belt breaks the unit still

performs its function. Another interesting note is that the MMU has burst error correction

capability; it can handle 2 single bit errors stretched by 50 bits, i.e., it covers "gaps" up to and

including 48 bits, which is typical of tape flaws or missing oxide. The MMU access time is 700

ms.

MMU requirements for vibration test include: random vibration peaks in the range 150-1000 Hz

with ground requirements of 0.067 G squared/Hz. This is ramped up at 6 db/octave form 20 to 80

Hz, fiat from 80 to 350 Hz, and ramped down at 3 db per octave from 350 to 2000 Hz, with

duration 2.5 minutes. Flight vibrations are flat at 0.03 G squared per Hz, with the a ramp

schedule of 6db/octave from 120 to 150 Hz and ramp down at 3 db/octave to 1000 I-Iz, with

duration 48 minutes. Acceleration requirement is 5 G, and shock is 20 G. The MMU operating

temperature is specified at 35 to 105 F, with nonoperational storage from minus 10 to 120 F. The

unit is cold plate cooled and typically operates between 55 to 80 F. The size is 14 x 10 x 7.5

inches, weight 27 lbs max. It requires 28 VDC. The power is 20 watts stand by, and 94 watts

maximum. Some additional characteristics of the MMU are presented in Table 1.

The MADS recorder (Modular Auxiliary Data System) is a single point system, i.e., no

redundancy measures are incorporated. If the tape drive fails, that is that. It is a wideband

magnetic tape system. It can switch lracks and make three complete passes at 2 hr/pass. One pass

is for ascent, one for orbit, and one for reentry. Specs/requirements include: temperature range

+35 to -120 F (the MADS is in the crew compartment). The unit typically operates between 65-95

F. The temperature specification is for the sake of the tape more than anything: it keeps tape from

sticking or flaking; the tape does not like to be "frozen". The unit breathes and has 0.5 PSI relief

valves. Random vibration peaks in the range 20-2000 I-lz with ground requirements of 0.067

G2/l-Iz. This is ramped up at 3 rib/octave from 20 to 80 Hz, is flat from 80 to 350 Hz, and ramped

down at 3 db per octave from 350 to 2000 .Hz. Flight vibrations are 0.09 G 2 per Hz, with the

same ramp schedule as ground vibe testing and the same peaks. Acceleration required is 5 G, and

shock is 20 G. Life requirement is for 100 hr head life. These units operate until failure and are

replaced.

1:_¢la,,n_ 9



TABLE I

SIRSTII.E MASS MEMORY UNIT

Data storage 8 data wicks

8 files

8 subfiles/file

32 blocks/subtile

512 words/block

16 bits/word

128 M bits total (data)

16 M bytes

Data wansfcr 1 M bk/sec

Useful life 100 orbital missions over a ten year period

(20,000 equivalent tape passes)

The signalsfrom the sourcesgo through aFrequency DivisionMuhiplexcr (FDM) and a linear

amplifier.Up to 15 signalsdrivea VCO (VoltageConu'ollcdOscillator).It"FMs" the voltageby

swinging frequenciesrelativetovohage changes. The IS signak arethen summed togetherand the

composite signalgoes toone trackon theMADS. On theourpuqrecovcry sidethedatagoes

through a discriminatornarrow band fihcrproducing theDC voltagesinitiallyinput.There are4

multiplexerson each FDM. The signal-to-noiseratioofeach composite signalis1.5% of full

scale.

The unitissimilartothe BcU and Howell 3700 labrecorderbut re,configuredforpackaging. The

reels_ c0_ial (over/unallied Use two tenS|tiningsystems forfeed and takeup sides.The

MADS package is20 x 14 x 8 inchesand weighs 65 Ibs.includingtape.The costisaround

$200K (re,corderonly).A playback suitcasehas 28 reproduce boardson itand isused as _uncl

supportequipment tooff-loadthedataaftertheorbiterlands.Capacity can bc assessedas9200

feetof tape(full14" reelof 1" tape),at 15 inchesper second. Itrecords 128 kbitper inch per

track,for9200 feettimes 28 n'acks.
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The zero G challenge is addressed by use of transport guides on rollers, large wrap around angles

on capstans, and tape path helpers, some of which are built into the cover to limit tape travel.

Potential problems can result ff the system is not operated '_:rroperly". The tape tends to go slack ff

the system is powered off at 60 IPS speed; the braking system cannot handle this without slack.

This results from built in measures designed to prevent stretching the tape, but one could picture it

simply as an inertia characteristic. If the tape comes off the guide rollers, it can scrape on the erase

head.

Another possible consideration is the ease of post flight data distribution. It currently takes a week

to get the MADS data to Rocketdyne. First the orbiter has to cool; then the data passes out the

umbilical through the reproduce boards GSE "suitcase" to ground recorders. These go to NASA

MSFC for archival storage and reproduction before being distributed to various NASA centers and

vehicle and rocket engine contractors. It would be desirable ffright after landing one could "hand

out CDs" to all the entitled parties.

The next section presents discussion and analysis of the present day technology.
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C-lb. AnalysisofthePresentMass Data StorageApproach

The definitionofa state-of-the-artmass datastoragesystemmust includean identificationofthe

strengths and weaknesses of the present engine mass data storage system. We have performed an

analysis of the present MDS system and identified, with the help of Rocketdyne, several system

characteristics which must be included in future mass data storage system.

DistalvsAnalogData Storage

The presentMDS systemrecordsbothanaloganddigitaldataon two separatedatarecordingunits,

theModularAuxiliaryData System(MADS) and theMass Memory Unit(MMU) respectively.

Thisseparationofdataasa functionofformatisinefficientinoverallsystemweight,due to

multiplerecordersystems,and dataaccess(seeDataAccessbelow).Analog-to-Digital(A toD)

technology exists which will allow the realtime digitization of all of the analog data which must be

recorded.Having allofthedataina digitalformatwillsimplifytheMDS unitrequirementand

improveaccesstothedata.Improvedredundancymanagement willalsobc possible.Finally,

havingonlydigitaldatawillallowtheuseofthemore sophisticatedand efficientdatastorage

technologies,likeopticalandmagneticdiscsand solidstatememory systems,tomeet allofthe

mass datastorageneedsoftheHMC system.

Distributed vs Centralized Data Recordin_

The sensor and data storage architectu_ is also an important system characteristic. The issue is

whether one should have a single centralized data collection system or a distributed architecture

with "smart sensors". The present system has a centralized architecture and the advantages of a

centralized architecture make it the best choice for future MDS systems. Cost effectiveness and

reliability are the two biggest advantages. A distributed system will have more expensive sensors,

an additional data bus to manage the wansmission of data from the distributed systems to the

controller, and will require extremely highly reliable individual parts in order to make the entire

system as reliable as the centralized MDS system. The centralized system is easier to implement

with the engine controller, easier to make reliable, and less complex and thus less expensive.

There would continue to be a separate controller for each engine.

The HMC architectureenvisionedduringthisstudyisverysimilartothatpresentlyusedforthe

SSME. Wc assumed thattherewould be individualcontrollersforeachengineand thattheHMC

functionforeachwould resideinitsindividualcontroller.We assumed alsothattheoutputdatato

bc storedby theMDS systemwould be transferredtoa singlecentrallocation(e.g.mission

controller).Thisissimilartowhat isdone on thespaceshuttle.Inthisarchitecture,a singleHMC

12
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MDS hardware set could be used for storage of all HMC data. This single tIMC MDS system

would meet the overall memory capacity requirements and recording rate requirements defined

during Task ]I.

Data Access

Data access can be broken down into two parts: 1) post-mission access and 2) real time access.

The real time access of engine data is not seen as an immediate requirement at this time, but

scenarios can be conceived where real time access will be important. Post-mission access is

important now, however, and the present system has an access time to the analog data of roughly 1

week. Future mass data storage systems must have post-mission access time on the order of

hours, not weeks, and should probably have some real time access potential. The centralized all

digital system discussed above can fulfill both of these access requirements.

We should be careful to distinguish between the different time scales of interest for memory

technology. One time scale involves the access to a particular desired bit (or block) of information.

On any rotating disk system, that access time is usually taken as aproximately one-half the

reciprocal of the rotation rate. This is because, on the average, one must wait for the disk to

complete one-half of a revolution before the desired bit comes to the read head. In addition, one

must add the time that it takes for the read head to move to the track that the bit is on. This is

• usually shorter than the time for one-half revolution of the disk. For example, in current optical

disk systems, the rotation rate is typically 1800 RPM or 30 revolutions per second. The average

time for the desired bit to come under the head is thus about 17 ms. The time for the head to shift

tracks is around 8ms. Thus the total access time is usually quoted as 25 ms.

This access time, which is the time to reach a particular random piece of information in an

operating system, is different from the time to reset the memory. That time becomes an issue in

maintainability and in getting the memory system ready for use again after a mission,

In our analysis of the operation of the HMC bIDS system, Task II, we concluded that real time

access to the data is not an important factor. In the current space shuttle, the data is in fact not used

on board the shuttle, and we could not identify any application for which it would be required.

Still, we recognize that real time access to the data could add a dimension of versatility of the MDS

system, perhaps for additional future applications. The specific system which we will propose

later for the POC demonstration (Section C-3) will in fact be compatible with real time access on

board a flight (with a latency around 25 ms).
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Media Altemabilitv

Optical disks use a variety of recording media, some of which may be written only once and

thereafter read but not rewritten. On others, the media allows complete writing, reading and

erasing. These media are refened to as rewritable. CI'he term erasable has fallen into disfavor

because it seems to imply a chance of losing data).

Thus, we judge that use of a rewritable media would be a somewhat desirable feature, mainly from

the point of view of resetting the memory after a mission. The specific technology development

that we propose later for the POC technology development is based on WORM media. But we

note that the technology development would be compatible with and useful for rewritable media

also, as they become more widely available.

For an optical disk which uses an unalterable medium, like the current write-once read-mainly

(WORM) systems, the memory can be reset only by physically disassembling the unit, removing

the media and replacing it with a new unwritten media. This is an operation that may take several

hours, but should not exceed one day. For rewritable optical memory units, which are now

beginning to become available, the reset time would be the time to erase all the data. For a memory

with the capacity and data rate defined in Task II, this would be about 20 minutes. This factor

would tend to favor the use of rewritable memories, but we judge that it would not be an extremely

criticaladvantage.

Rec¢rder Environment

The choice of the environment in which the kIDS system _ operate will strongly impact the cost

of the system. The choices trade off distance from the sensors, available space, and the harshness

of the environment. The present system resides in the cabin environment. The future system will

also greatly benefit from this choice of locations if it is possible in a manned vehicle. In an

expendable advanced vehicle, there may be no environment available which is as benign as the

cabin. An environment such as the area of the engine interface unit might be a reasonable

compromise area for location of the recorder on such a vehicle. In addition to having more benign

environmental requirements, which translate directly into cost, the cabin environment also opens

up the opportunity to use the MDS system for additional data storage tasks like mission and

experimental data. The most versatile and cost effective future MDS systems should take

advantage of this choice of environments.

14



Redundancy Management

Redundancy is an important issue for all space missions for obvious reasons. The present MDS

recorders have two different levels of redundancy. The MMU system has two separate recorders

and a recording algorithm which records the data in triplicate to avoid tape difficieneies. The

MADS recorder has no redundancy. Future MDS systems must have redundancy but preferably

at a lower cost, weight, and power expense than the MMU redundancy scheme. The newer, more

dense digital recording technologies are expected to offer this type of redundancy option.

Recorded Data Format

The data recording format issue is whether to store the raw sensor data or processed engineering

data. The processed data offers quicker use of the data in the post-mission analysis, but ff the data

are suspected to be in error, the effort requ/red to reconstruct the original raw data can be

enormous. Engineering data can also require as much as 10 rimes as much memory per data

element due to the necessary inclusion of conversion and scaling factors. The present system

records raw data and future systems should do the same, although all of the data should be digital

asdescribedabove.

Catastrophic Event Data Recovery_

The analysis of a catastrophic event will require as much mission data as can be made available and

engine data will have a high priority in such an analysis. Both the MMU and the MADS data of the

Challenger were recovered. Future kIDS systems must offer similar catastrophic event

survivability. The entire MDS unit may not be able to survive such an event, and the design of a

unit which would might be prohibitively expensive, but the systems recording media must have a

high probability of surviving so the the engine data can be recovered.

DoeM=sc 15



C-Ic. Requirements for HMC

In this section, we evaluate the requirements for HMC MDS. Fast, we defined a variety of general

categories of requirements for the lVlDS system. The categories are the following:

• Data Storage Capacity

• Reliablity

• Resource Usage

• Environmental Factors

• AccessTime

• Reusability

• Risk

Then within these categories we defined specific individual factors relevant to the system

operation. These specific factors are defined later. We finally derived quantitative crtieria for these

factors for each of three types of mission scenarios:

• Current Flight System (i.e. the space shuttle)

• Ground Test Stand

• Advanced Vehicle (i.e. a future mission requiring a reusable engine)

We first discuss these missions, then return to a description of the various requirements.

1. Current and Advanced Shuttle Vehicles

Functional Architecture- Figure 1 illustrates the functional data path for main engine data. The

main engine controller is a computer/controller which acts as a control and monitoring interface

between the shuttle vehicle and the engines. Some of the engine data is derived from transducers

on the engine, while other dam originates from the controller. For instance, actuation command

signals originating in the controller are recorded as engine data.

The figure basically shows the flow of the data gathered by the sensors for each engine. The

sensors are listed near the top left of the figure. Each engine is controlled by a main engine

controller, which is a dual channel device containing two digital computers. The controller

controls all main engine components and operations. When engine data are sent to the engine

controller, the data are stored in a vehicle data table in each comuter's memory. The vehicle data

table is periodically output by the controller to the engine interface unit (EIU).
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The EIU is a specialized multiplexer/demultiplexer that interfaces the general purpose computers

with the main engine controller. When SSME data are received by the EIU, the data are held in a

buffer until a computer requests data from the EIU. The EIU then s_nds the data to the computer.

Each EIU is dedicated to one SSME and communicates only with the main engine controller for

that engine. The EIU's do not interface with each other.

Engine data are currently recorded on the two recorders described earlier, the Mass Memory Unit

(MMU), and the Modular Auxilary Data System (MADS). The Mass Memory Unit is a digital

recorder, and is recording data from other systems aboard the vehicle as well as engine data. It has

a weight of 27 pounds, a volume of 1050 cubic inches, and consumes a maximum of 94 watts.

All engine data on the digital data bus are recorded on the MMU.

The MADS recorderisa wideband analogtaperecorder.Itweighs 65 pounds, and has a volume

of 2240 cubicinches.The MADS unitrecordsallof theanalogdatadescribedbelow.

We considered that digital processing technology has advanced so far that any retrofit or

modification of the shuttle mass data storage would eliminate the analog storage and all analog

measurements would bc convertedtodigitalinformation.Thus, one digitalmass storagedevice

would bc used torecordallengine data.Of course,therecordermay well be duplicatedfor

redundancy as isdone withthe presentMMU.

In Table 2,we summarize therequirementsforMDS capacityand recordingrateon a per engine

basis.Ifone usesa singleMDS unitfora multi-enginevehicle,as we have recommended in

SectionC-Ib, one multipliesthe capacityand rateby the number of engines. In particular,Table 2

includesthecapacityand recordingratefora threeenginevehicle,likethespace shuttle.The

numbers presentedinTable 2 representan importantresult,one which had a su'onginfluenceon

therequirementsdefinitionasdescribedlater.

We notethatthesenumbers representuser-availabledata.The totalcapacityof any MDS system

must be largerthantheuser-availabledatabecause of therequirementsof errorcorrection,

formatting,etc.

An advanced reusablespacecraftwas alsoconsidered.We note thatthereisnot yetany designor

specificationsdefinedforsuch a vehicle.We consideredthatthetotalengine healthdatatobe

recorded would be very similartothebaselineshuttle.There arctwo competing factors.One isa

desireto gathermore datawith a wider varietyof sensorsinordertodo a more complete job of
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HMC. The second is the probability that future engines will be designed with more performance

margin built in, so that less data would be required for HMC. We judge that these two tendencies

will approximately balance so that HMC dam requirements on a per-engine basis will not change

signficantly. The architecture would be also similar, and again we envision the engine health data

to be entirely digital, and stored on a single recorder. The mission duration was considered much

longer, so that data permanence and reliability must be enhanced. Additionally, the longer mission

duration created a desire for access to health data during the mission, so that engine health data

could be transmitted during the mission. In a future vehicle, there could be a larger number of

engines, perhaps as many as 10 for the AL_ (Advanced Launch System). Thus the results shown

in Table 2 should also apply to an advanced flight system. Since Table 2 presents data on a per

engine basis, it is easy to scale for a number of engines other than 3.

En_ne Health Data - Data from the baseline shuttle contains both digital and analog data. There are

128 digital parameters and 8 wideband analog parameters recorded for each engine. The digital

words are either engine controller digital command words or switch and valve discrete status

parameters. Data is recorded for a total of 1140 seconds.

The present analog data consists of 6 channels at 1000 Hz. and 2 channels at 5 KHz. There is

some desire by Rocketdtyne to increase both the number and frequency response of analog

channels. This would increase the analog data to 12 channels at 20 KHz. Table 2 summarizes the

data requirements in terms of rate and the total capacity required, using the higher "wish list"

analog requirements.

Although the parameters recorded may be different for an advanced system, there are separate

tendencies which both increase and reduce the amount of data required. We believe these

tendencies will approximately cancel out, and the maximum data rate and total capacity will be the

same for the advanced space transportation system.

19
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TABLE 2

AND ADVANCED VEHICLE DATA REQUI_

Data Per Engine -

128 ch @ 25 samples/s,16 bit = 51.2 Kbits/s

Analog 12 ch @ 40,000 samples/s,16 bit = 7.68 Mbits/s

Total = 7.73 Mbits/s

Record Time, 1140 sec

r

Total Storage per engine = 7.73 Mbits/s x 1140 s = 8.81 Gbits

Total Storage per vehicle = 8.81 Gbits x 3 = 26.4 Gbits (3 engines)

Maximum Vehicle Rate = 7.73 Mbits/s x 3 = 23.2 Mbits/s (3 engines)

-!
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Environmental R_uirements- The shuttle cabin environment at the location of the MMU was

taken as the environmental requirement for both the existing shuttle and an advanced spacecraft.

Table 3 summarizes the environmental requirements. An additional requirement considered was

survivability of a catastrophic failure. Although this is not a primary requirement for a health

monitoring recorder, ff such a requirement can be met without a major development, cost, or

resource usage increase, this would be a desirable feature, and should be considered in ranking

candidates.

2. Ground Test

Ground testing for research and development purposes creates many differences in requirements.

The data quantity and rate are greatly increased, but the envirommnt requirements are much more

benign. We considered the environment to be inside in a laboratory, so that the environment is

considered to be a "laboratory environment". We felt that the architecture should be considered

very flexible, but the most stressing requirement would be ff all data were recorded on a single data

recorder This was thus specified, although a single recorder in our terminology could contain

several separate media packages in a single case.

Rocketdyne has a test plan for an engine deveiopmentexperiment that contains measurements

desired for a highly instrumented test firing 2. The measurement rate and total data quantity are

shown in Table 4. The table is based on the same engine operation times as for the shuttle engines.
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TABLE 3

ENVIRONk__NTAL REQUIREMENTS

Temperature (Operating) - 35F to 120F

Temperature (Storage) - - 10F to 120F

Acceleration - 5G

Shock - 20G

Vibration

Flight - 20 - 150 Hz, +6 dB/octave

150 - I000 Hz, 0.03G2/Hz constant

I000 -2000 Hz, -6dBloctave

Equivalentto6.48 G RMS

Duration 48 minutes

TABLE 4

TEST BED DATA REQUIREMENTS

Digital-750 ch @ 50 samples/sec,16 bit = 600Kbit/s

Analog- 132 ch @ 40K samples/sec, 16 bit = 84.5 Mbit/s

Total = 85.1 Mbit/s

Record Time, 1140 sec

Total Storage = 85.1 Mbit/s x 1140 = 97.0 Gbits
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3. Analysis of Requirements

In comparing the current flight system with the advanced vehicle, we determined that there may

well be a reduced set of parameters required for the advanced vehicle, which is expected to have a

simpler engine with more margin built in. At the same time, the capability of sensors continues to

increase, so there may be a desire to include new types of sensors for HMC, with operation at

higher frequency. On average, these two trends may offset each other, so that there would not be a

large change in total required capacity.

We present in Tables 5, 6 and 7 the specific factors, plus their quantitative desired values, that we

have derived. These tables form the most important part of our requirement def'mition. These

tables also contain comments on the relative importance of the categories; we will return to this in

Section C-ld on prioritization.

The results in these tables represent our judgement, and are based on certain assumptions.

The assumptions that were used in deriving these quantitative results include the following:

• All analog to digital conversions have been done and data are all digital

• The requirements for data storage are presented on a basis of three engines per vehicle for the

flight systems, and on a basis of a single engine for the ground test

• Environmental - unit is in space shuttle cabin for the current system. For the advanced

system, two environments are defined, one in the cabin for a manned mission and one in the

same area as the engine interface unit, defined as a "compromise" environment

• Resources are expressed in terms of a limiting maximum

Since current technology comes close to meeting data storage requirements, we use current

requirements (analog and digital) as the maxima for resource requirements

• Permanence - we assume data is recovered and backed up, so there are no long term requirements

• Survivability - assumes catastrophic survivability, protect data only

• A byte for these purposes consists of 8 bits of data

• Maintainability - all boxes could be replaced within a day - maintenance is on command or on

demand, similar to military requirements

• Future capacity - some requirements go up, some down as simpler engines are developed, on

average we predict little net change

• The capacity and data rate are specified on a "user-available" basis. Requirements for

formatting and error correction would add additional capacity requirements.
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No requirements have been identified for real time access to the data on the current _ght

vehicle or on the ground test stand. Because of the possibility of additional applications and

increased versatility, real time access has been given some weight for an advanced vehicle.

It would be desirable to use rewritable media, because this would allow resetting the memory

more easily afte:" a mission. But this is not an extremdy critical need, and so long as a WORM

media could be physically replaced within a few hours, it would not be an extreme

disadvantage.
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Table 5

Flight System
Re,quirements

Data Storage
Total capacity-- 3.3 G bytes
Data rate -- 23.2 M bits/see

Architecturalcompatibility-- single,streamor 16 bitparallel,alldigital

Reliability
Error rate-- 10 -6

Permanence-- 1000 hrs

Maintainability m no periodic
Read cycles-- 20000
Write cycles-- 100 (fornon removable media)

Resource Usage
Size -- 3000 in3

Power-- 150W

Weight _ 100 lbs
Cost- $300K

Environment

Operating temperature-- 35-105°F spec
Vibration _ 6.48G R.MS, 20-2000 Hz def'med spectrum
Shock -- 20g .,
Pressurem 0-I000 Torr

Humidity -- 0-95%
Acceleration _ 0-5 g

. Survivability -- 100g, salt water, hi temp, explosion pressure

Access Time -- no requirement

Reusability - erase or remove
Ease of access, reset or removal - 1 day max

Risk

Cost of development
Growth potential
Readiness (1991)

Do¢ Marl_
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Table 6
Test Stand

Requirements

Data Storage
Total capacity- 12.1 G bytes
Data rate--85 M bits/see
Architectural compatibility m flexible

Reliability
Error rate-- 10 .6
Permanence-- months

Maintainability -- commercial
Read cycles -- 20000
Write cycles-- 100

Resource Usage
Size -- Iruck portable
Power-- 1500 W
Weight _ truck portable
Cost _ $300K

Environment
Operating temperature -- O-IO0°F w. solar heating
Vibration _ commercial
Shock _ commercial
Pressure _ 1 Arm
Humidity-- 0-95%
Acceleration-- 1 g
Survivability _ not an issue

Access Time -- no requirement

Reusability - erase or remove
Ease of access, reset or removal - 1 day max

Risk
Cost of development
Growth potential
Readiness-must be available in 1991

D*cMm_
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Table 7

Advanced Vehicle

Requirements

Data Storage
Total capacity-- similar to current flight
Data rate m similar to current flight

Architecturalcompatibility--singledigitalline

Reliability
Error rate-- 10 -8 - 10- -/

Permanence -- months

Maintainability -- no periodic

Read cycles -- 200000
Write cycles-- 1000

Resource Usage
Size--
Power --
Weight
Cost

1/2 current flight (cost cons't $)

Environment

Operating temperature--
Vibration

Shock
Pressure --

Humidity --
Acceleration

Survivability

Same as current flight

Expendable System
-65 - +160 ° F-

Defined spectrum peaked
at 0.067 G2/Hz

-4) - 15.23 PSIA
0- 100% RI--I

Catastrophic

Access Time _ mission dependant, few seconds desirable

Reusability - erase or remove

Risk

Cost of development
Growth potential
Readiness
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The derivation of the total required capacity and bit data rate requirements has been performed

previously, for flight vehicles and ground test, respectively.

The error rate requirement is estimated from considerations of the inherent error rate of the

transmission. The errors have a tendency to occur as burst errors, affecting a number of bits at a

time. The error detection for the burst errors is am, omplishcd via BCH coding, in which 31 bit

blocks are transmitted, with 16 bits of data and 15 bits for parity checking. If the word is bad, the

word is required to be retransmitted. This type of coding is designed for burst noise, which is the

common type of u'ansmission noise. This method gives an error rate around 3 x 10 .5 for errors in

transmission.

Specification of an error probability of 1 x 10 .6 for the recording process means that the total

system error will not significantly increase above the transmission error rate. At the same time, it

does not seem productive to specify a significantly lower recording error rate, because a tighter

specification in that area would not appreciably improve the total system performance.

For the current flight system and the ground test, the MDS is considered to be purely archival;

there arc thus no requirements for access time during flight or during test. For the future vehicle, it

is judged that there may be advantages to accessibility of the data during flight, so a requirement is

included.

The results presented in Tables 5, 6 and 7 represent our best quantitative judgement about the

important performance requirements for the MDS technology. In the next section we describe a

priodtization to determine the relative importance of these factors.

Do(: Merge
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C-ld. Prioritization of Critical Areas and Requirements for HMC

This section is concerned with the establishment of a prioritization scheme for the requirements

which have previously been defined in Section C-lc. In that section, we established quantitative

requirements for a number of important factors in a variety of categories for the MDS system. The

categories included:

• Data storage capacity

* Rdiability

• Resource usage

• Environmentalfactors

• Access time

• Reusability

• Risk

This prioritization represents a culmination of the activities for Task H of the contact. It also served :

as an input for Task lYl.

In our prioritization, we adopted the following approach, in order to account for the tradeoffs that

can be made between various relevant factors. (For example, the capacity of an MDS system can

be increased by adding more urdts, but at a cost in resource usage, e.g. increased size, weight, etc.

Or, in order to meet environmental specifications, a memory unit could be enclosed in an elaborate

temperature-controlled vibration-isolated package, but this package could be unacceptable from the

standpoint of size or cost.) The total required data capacity and data rate and the environmental

factors are to be treated as requirements that must be met, i.e. the system must have enough total

capacity to perform its task and it must operate in the prescribed environment. A technology that

cannot meet the total capacity, data rate, or environmental requirements under any conditions will

be rejected. During Task IN, we def'med specific systems using the various candidate

technologies, so as to meet these minimal requirements. Then the distinguishing factors became

issues such as the resource usage and risk associated with the development of the technologies.

Table 8 presents statements on the relative importance of each broad category of requirements, for

each of the three mission scenarios. The categories of data storage and environmental catability are

_'eated as binary go/no go requirements, i.e. a candidate technology which cannot meet the minimal

requirements will not be considered further.

D0¢ Mca'i_
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The othercategorieshavetheirindividualfactorsweightedinimportanceaccordingtoa scaleof

weightingfactorsdefinedby Table8. Thistablerepresentsourconsideredjudgementaboutthe

relativeimportanceofthevariousfactors.These factorswere usedinTask KI asweighting

factors,wi. For a candidatetechnology,we dcfine,d a systemconfigurationwhich canmeet the

datacapacityandenvironmentalrequirements.

The performance of a given system was evaluated and given a score, si, relative to the minimum

requirements. The scoring system and the scores, si, were defined in Task m. At the conclusion

of Task IT[, we evaluated the various candidate technologies by forming the sums siwi for each

specified system.

This assignment of priorities and establishment of quantitative criteria for important parameters of

an MDS system represents a conclusion to the work of Task II.
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Data storage

Reliaiblity

Resource usage

Table 8
Prioritizadon

Weighting of Major Categories

I2i z.S.zsm

Binary,must define
system that meets

_qu_n_n_

Binary, must define

system thatme,cts

requirements

See weighting factors See weighting factors
below below

See weightingfactors See weightingfactors
below below

Environment Binary Binary

Access time 0 0

Reusability

Risk

See weighting factors
below

See weighting factors
below

See weighting factors
below

See weighting factors
below

Advanced Vehicle

Binary, must define
system that meets

requirements

See weighting factors
below

See weightingfactors
below

Binary

See weighting factors
below

See weighting factors
below

See weighing factors
below

Factor

Weight
Size
Cost
Permanence

Reusability
Maintainability
Write cycles
Read cycles
Access time
Error rate

Survivability
Power

Cost of development
Growth potential
Readiness (1991)

Scale of Weighting Factors

Flight System ZesLStaml

10
8
8
5
5
5
5
4
0
3
3
3
3
6

Binary

3
3
10
4
5
5
4

4
0
5
1
3
3
6

Binary

Advanced

I0
8

8

5

5

5

5
4

3

3

3

3

6

8
2

Yehicle
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C-2. Survey of Mass Data Storage Technologies

This subsectionisa review of thesurveyof availabletechnology forMass Data Storage(MDS) for

Health Monitoring and Control fflJVlC) for rocket engines.

In this subsection, subsubsection C-2a describes the various technologies. Subsubsection C-2b

discussesour evaluationprocedure. We evaluatedthevarioustechnologiesforpossibleuse in

threedifferentscenarios:a currentflightsystem (spaceshuttle),a ground teststand,and an

advanced flightsystem. The requirementsforeach of thesewere definedinTask II.Finally,

subsubsectionC-2c presentsour recommendation forthebestcandidatefortechnology

development.
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C-2a. Survey of Mass Data Storage Technology

In this section we describe the various technologies which were included in our survey. These

include optical technologies, magnetic technologies and solid state (or electronic) technologies.

1. Optical Technologies

In accordance with our original statement of work, we have considered the following technologies:

• Optical Disks

• Holographic Memories

• Optical Fibers

• Optical Heterodyne

As described below, after consideration, we decided to treat optical heterodyne as a subset of other

optical storage technology. In addition, we identified two additional optically based technologies

which we have included in the survey.

• opdcalpaper

• opticalcards

a. Optical Disks

Optical disk memory technology is similar to that of magnetic disk storage technology in that the

data are stored on the surface of a spinning disk(3). In the ease of the magnetic system there are

minute magnetic regions. In the optical disk ease the region undergoes a change in optical property

caused by a photochemical, ablation, thermomagnetic, or other process. This change is induced by

a laser beam focused onto the spinning media. (In the jargon of optical data storage, the word

media is used for the recording material, despite the fact that it has an apparently plural form.) In

magnetic memories the energy responsible for the readout signal is contained in the media itself. In

the case of optical disk memory the stored data bits act as gates for the readout laser beam, which

provides all the required energy. These gives rise to the fact that the reading device need not be in

dose contact with the storage medium, since laser beams can be focused to micron size spots data

packing densities of >10 8 bits per square inch are possible.
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Optical disk memory systems can bc divided into two basic classes depending upon the type of

playback process used. The fast case is where the light reflected from the spinning me.dium is

altered in amplitude when a written mark is encountered, and in the second case the polarization

state of the reflected light is altered, usually a small rotation in the plane of the polarization. A

reflectivity sensing scheme is used today in digital audio players, in CD-ROM, (compact disk mad

only memory, and in write-once-read-many (WORM) systems and is currently und_ development

for rewritable technologies using phase-change and dye-polymer _ The polarization sensing

technique is used for rewritable optical disk technology referred to as a magneto-optical (M-O).

Both techniques share considerable commonality in that they both must transfer energy efficiently

from thelaserdiode totherecordingmedia forwritinga bitand thenreturnlightfi'omtheme,ctiato

the detectionsystem toprovide dataand servo signalacquisition.The basicreflcctivity-sensing

system isshown inFigure 2 and thepolarization-sensingsystem inFigure3. The WORM and

rewritabletechnologiesarepossiblecandidatesfora datarecordingsystem.

Optical disk technology has inherent features making it ideally suited for rugged environments

requiring storage of large data amounts. These features include:

largedisk/headspacingpreventinghead crashes(0.8ramtypically)

storagemedia shieldedby protectivelayerstransparenttolaserbeam

media _-ackingand focusremove mechanical alignmentproblems

These features allow a system with optical disk cartridges to store and randomly access vast

amounts of information on a removable disk with greater than I0 year storage life. Optical disks

can have Gbytes of data with millisecond access times. The WORM system provides an

unalterable data medium once recorded.

Up to",.hepresenttime,most opticaldiskshave not been rewritable.But rewritablemedia based on

magneto-opticeffectsarcmaking rapidadvances and probably inthenearfuturemost commercial

systems willbe rewritable.For theI-DqICMDS application,rewritabilityisnot a strongadvantage.

Our evaluationhas thusemphasized the use ofWORM technology.

There arenumerous companies providingWORM and rewritabledisk-drivesystems for

commercial use. A few companies have focused theireffortson developing rugged militaryunits

designed tooperateina MIL-E-5400 environment. These companies are:

36



CherokeeData SystemsInc.Longnmnt, CO

MountainOptech,Boulder,CO

GE Aerospace,Camden, NJ

Honeywell Inc.,Albuquerque,NM

SundstrandData ControlInc.,Redmond, WA

SundstrandhasannouncedthatitsM-O rewritableopticaldisksystemwillbe flowninthecargo

bay oftheshuttleon MissionSTS-39 inNovember of 1990 aspartoftheDam System Experiment

project.Thissystemhas5.25inchdiskswith300 Mbytes ofuserdataand a datatransferrateof5

Mbits/scc.

GE AerospaceispresentlyworkingwithNASA Langleyinmodifying)heirDuraStorcM-O

rewritableopticaldisksystemthatisunderdevelopmenttobe spacequalifiedby 1998.This

systemusesa 14 inchdiskwith5 Gbytespersideofuserdataand a datatransferrateof25

Mbits/scc.

HoncyweU is in production of a WORM system used as digital memory unit for Honeywelrs

Digital Video Map System on board the AV-8B and F/A-18 Night Attack aircraft. This system has

5.25 inch disks with a user data capacity of 260 Mbytes per side and a data transfer rate of 4.5

Mbits/scc.

Both theCherokeeand MountainOptechsystemsunderdevelopmentarc5.25inchWORM drives

withapproximately300 Mbytes persideand 5 Mbits/secdatarates.The flightsystemmass data

storageunitstrawmanisa systemwith3.3Gbytesofuserdatacapacityand a datarateof23.2

Mbits/sec.To meet boththisdatacapacityand dataratespecificationmultiple5.25inchdrives

would bc requiredwhich arcmultiplexedtogether.A single12or 14 inchopticaldisksystemcan

meet thedatacapacityrequirements.The dataratecapacityforthissingledrivesystemcanbe met

by usingmultiplelaserdiodestobothwriteand readthedatasimilartowhat isdone intheGE

DuraStorcrewritableopticaldisksystem.

For boththeteststandand advancedsystemstrawmansystems,therequiteddatacapacityof 12

Gbytesand datarateof 85 Mbits/secwould requirea multipledrive multiplexedsystem.

In our evaluation, we have considered two directions for technology development:
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* Higher performance optical disks

• Corn.mercia] optical disks in a chassis

The firstapproach ismore technologyintensive,drivingtoward the development of higherpacking

density,largerdiameterdisks,multiplelaserheads,higherrotationspeed,etc.The second

approach ismore aimed atpackaging of state-of-the-artopticaldisktechnology toprovide the

environmentalcharacteristicsrequiredand usingmultiplediskstoprovidethecapacity.

Commercial optical discs can be installed in a ruggedized chassis in the same way the magnetic

hard discs were installed in the system described above. The only difference is that optical discs

have removable media whereas hard discs do not. The data rate of the commercial optical discs

baselined for the system is 4 Mbiffsec, so buffering and multiplexing will again be required to

reach the data rate requirements for this application. Erasable optical discs with 1 Gbyle capacity

are presently available, but the 1 Gbyte disc is double sided and single side usage was baselined

for this application. Each ruggcdized chassis system contains four of these drives and would have

2 Gbytes of storage if the d/scs are not flipped. Multiple chassis's are necessary for some of the

applications. Storage densities are expectedto improve by a factor of 2 so I Gby_e/side drives

were baselined for the Advanced Flight system.

The environmental effects on this system will be very similar to the effects seen by the magnetic

hard disc system except that the optical disc media is not as sensitive to thermal and humidity

extremes and the active tracking of the optical system may make it inherently more robust.

b. Holographic Memory Systems

Optical memory systems based on storage of large blocks of information as a hologram in a

recording medium have been under development since The 1960's, almost as long as the bit-

oriented laser-based memories such as the laser disks. They have no'yet progressed to the

pointof broad commercial usage,such aslaserdiskshave,but for some applications,they offer

significantadvantagesascompared tothebit-orientedmemories.

The organizationof a holographicmemory isdifferentfrom a bit-oricntedmemory. In a bit-

orientedmemory, informationstorageand informationreadoutoccur one bitata time. A

holographic memory stores and re.ads out a large number of bits simultaneously. The basic

configuration of a holographic memory is shown in Figure 4. The information is stored as a

hologram on some material,theholographicmemory medium. The apparatusinFigure4 contains
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a holographic recording arrangement, with a reference beam and a signal beam. The object of

which a hologram is to be formed is a two-dimensional array of bits. This array is constructed by

a device called a page composer (or spatial light modulator). A page composer can be considered

as an array of light valves, some of which are open and some closed. The opening and closing

may be activated by light, by an electric field or by a combination of both. The open valves wiU

corms'pond to ones, and the closed valves to zeros. These light valves are arranged in a pattern to

represent an array of ones and zeros. This array of ones and zeros is then stored at one time in the

holographic memory medium. Because the hologram contains a large number of bits, one has

simultaneous storage of this large number of bits at one time.

The beam passes through the beam splitmr and is divided into two parts, the reference beam and

the signal beam. The signal beam goes through an optical train and arrives at the page composer

where an electronically composed data pattern is set up. This data pattern is imposed on the signal

beam. When thesignalbeam combines with thereferencebeam toform a hologram on the

recordingmedium, theresultinghologram representstheentirearrayof bits.The hologram is

formed on one particularsmallareaof thestoragemedium. The areaisselectedby thelightbeam

deflector.During recording,themodulators allow maximum lightintensityinboth the signaland

referenceb_s.

In order to store a different hologram in another location on the storage medium, the deflector

moves the beam to that location. Movement of the object from one lens to another lens in the lens

array changes the position of the hologram on the storage medium. A t the same time the reference

beam tracks the signal beam, so that both beams reach the same spot in the storage medium. If one

changes the angle between the signal and reference beams it is also possible to store multiple

holograms in the same area of the memory mate_al.

Readout of data occurs when the hologram is addressed with only the _fgence beam. The
z_

deflector directs the beam to the hologram to be_ad out. An image which represents the array of

ones and zeros is produced. This image is focused_ by the lens nextt 0 the recording medium. An

image of the data array is projected onto the photodetector array, Which has the same relative

dimensions as the elements of thepage composer. Each bii ori_ally stored in the page composer

is incident on one photodetector in the array. The data thus arc converted back to an electrical

signal. If a particular area in the page composer corresponded to a one, there will be light on the

photodetector in that position in the detector array. Thus, the array of bits can be reconstructed and

convertedtoan electricalsignalinparallel,with allthe bitson thepage being recoveredatthesame

time. This featureallowsthedatareadoutratetobe high.
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Storage of data in holographic form in an optical computer memory offers several advantages

compared to a bit-oriented memory. The information about the original array of bits is dista'ibuted

in a holographic fi'inge pattern and covers the entire hologram. Therefore, the hologram is not

sensitive to small imperfections such as dust particles or scratches. Such imperfections could

cause the loss of a bit in a bit-oriented memory, but their only effect on the hologram is to reduce

resolutionslightly.

A second advantage ofholographicstorageisthattheinformationisessentiallyrecovcre,d in

parallel.A largenumber of bitsarc allmad out atthesunc thnc by theprojectionof theimage of

the arrayof bitsdirectlyonto thearrayof photodetectors.This recovery ofa largenumber of bits

atthe sarnctime offerspossibilitiesforvery high readoutrams.

The requirements on light beam deflection are reduced in holographic memories. Each position to

which the beam is deflected represents a page of data containing many bits. Thus, for a 109 bit

memory (104 pages of 105 bits each) one re,quirts only 104 separate locations. This figure lies

within the capabRity of inerdaless light beam deflectors. Addressing can be done entirely with

nonmechanical light beam deflectors which have random access time less than 10 #ase,c. Such a

holographic optical computer memory could be constructed with no moving parts and since 105

bits are stored (and read) in parallel, one could have data rates of 1010 bits/second, although

system complexity would bc high.

Stillanotheradvantageisthattheholographicrecordingand reconstructionisinsensitivetothe

exactpositionsof thereferenceor readingbeam on the hologram. This isnot thecase with the bit-

orientedmemory, forwhich thebeams must be positionedvery exactly.This means thatthe

holographicsystem willbc lesssubjecttoproblems of vibration.

The holographic approach to optical data storage was followed, along with the bit-oriented optical

disk approach, for a number of years, through the early 1970's(4"13). By the late 1970's, the

optical disk approach had clearly pulled ahead. At the same time, there had been little progress in

the two most difficult aspects of holographic recording, the page composea" and the recording

medium itself. Therefore, interest in holographic optical data recording waned, and there was little

research done and no papers published throughout the 1950's.
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Recentlytherehasbeena revivalofinterestinholographicopticaldatarecording.Althoughthere

stillhave beenno paperspublished,atleastthreeresearchorganizationsareactivelypursuing

holographicopticalmass datastorage.

• GeorgiaTcch University

• UniversityofAlabama -Huntsville

• PhysicalOpticsCorporation,Torrance,California

Theseorganizationsfeelthatadvancesinmaterialstechnologynow offerthepossibilityofsolving

theproblemsassociatedwiththepagecomposerand therecordingmedia.The Universityof

Alabama andGeorgiaTech arcusingferroclcctricliquidcrystalpage composersand a

photopolymerrecordingmedia. PhysicalOpticsisusinga magnetoopticpagecomposer and a dye

polymermedia.None oftheorganizationswcrcwillingtoidentifytheirmaterialsexactly.
r

A diagramofthePhysicalOpticssystemisshown inFigurc5. Thissystemhasthefollowing

characteristicscurrently:

Bitdensity 5 x 107/cm2

Page size 512 x 512

Page rate I00 Hz

Bitrate 26 Mbit/sec

The requirementsforthecurrentflightsystemcouldthuseasilybc met by a systemwitha

reasonableareaofstoragemedium. Sincethepagerateislimitedby page composer setup time,

ratherthanby recordingtime,therequirementsfortheteststandapplicationcouldbc rnctby

addingseveralstagesofpagecomposerplusstoragemedia,withelectro-opticbeam deflectorsto

switchbetweenpagecomposers.

The main drawbackinvolves_c factthatone would bed0_g ho!ographicr_.o_g inan

environmentwithsubstantialvibration.Inholographicrecording,one requiresallthecomponents

toremainstationaryrelativetoeachothertowithinlessthan0.Iwavelength.Thismakes the

vibrationrequirementmore stringentfora holographicsystemthanfortheothercandidate

technologies. _

We have defined a vibration isolation approach which we believe could provide the required degree

of isolation. The approach uses active vibration damping, in which the isolation is provided by
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accelerometers and electromechanical servocircuits which actively cancel any time varying forces.

It should be possible to provide adequate vibration isolation for holographic recording by using

two such stages in series.

However, the vibration isolation comes at a high price in resource usage, e_y size and

weight. These factors reduce the attractiveness of the holographic approach.

c. Optical Card Concept

This concept for MDS technology for rocket engine HMC is based on the rapidly emerging optical

card technology being developed by a variety of vendors. This technology is technically related to

the compact audio disc and CD-ROM technologies but offers a more compact and inexpensive

digital memory system for small memory storage uses.

The optical card concept is based on present day optical card systems which utilize an optical

recording stripe encapsulated between multiple protective transparent card layers. Data bits in the

form of microscopic sized spots of 3 to 10 micrometers in diameter are recorded on and read from

the optical recording stripe. A high speed laser recording system can be used to provide up to 150

kilobits per second write speed per writing channel. Several different types of cards are available

including WORM, ROM (read only memory) and a hybrid card offering a combination of both

WORM and ROM features.

To read the data light from an incandescent bulb, a LED 0ight-emit'dng diode) or laser illuminates

the data bits contained on the optical stripe located beneath the protective transparent surface of the

card. A CCD (charge coupled device) array measures the intensity of the light reflected back from

the stripe. Recorded data spots have a reduced reflectivity compar_ to that from u_ecorded areas

and these reflectivity differences are read by the equipment as digital bits.This technology is

relatively impervious to strong electric or magnetic fields, EMP, EMI, X-rays, ultraviolet light or

electrostatic discharge.

Error rates for this technology are very small atless than 10-12. The media is quite pmnanent and

should retain data for atleast 10 years. The media is write once and therefore would be replaced

after every mission. The media should allow well in excess of 200 read cycles, exceeding any

MDS requirements.
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Present day cards hold up to 2.8 Mbytes of data within a 35ram stripe of about 2 inches in length.

When extrapolated to account for the MDSstorage requirements the area of card material grows

substantially, to the values listed below:

Flight System 9,910 in 2

Test Stand 36,400 in 2

Advanced System 33,300 in 2

When we assume a maximum area per card of 100 in 2, a 0.25 in spacing between cards for the

read/write head travel and 1 inch peripheral volume for envirommntal isolation the following

volume requirements are derived.

Flight System 3,146 in3

Test Stand 11,132 in3

Advanced System 10,164 in 3

Mass estimates were derived using standard card reader densities and the volumes listed above.

Flight System 72 lbs.

Test Stand 256 Ibs.

Advanced System 233 lbs.

The power consumption was determined by assuming 10W of writing power per card (150

kbits/second) and scaling upward to reach our requirements.

Flight System 1000 W

Test Stand 5000 W

Advanced System 1000 W

Development and recurring costs were assessed through discussions with SRC personnel familiar

with the development of hardened optical card readers.

Development Costs

Flight System 2000 $k

Test Stand 500 $k

Advanced System 5000 $k
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Recurring Costs

Flight System 300 $k

Test Stand 150 $k

Advanced System 500 $k

It is expected that there is little growth potential for this concept and that the volatility of the card

media makes this concept not very survivable. The access time for reusability is estimated at 1 day.

After this analysis it became clear that the optical card concept would be highly aligned with the

optical tape concept and that the differences in the two concepts were mainly in the implementation

of the media/head geometries.

d. Optical Tape Concept

The optical tape concept relies on a new recording medium, which is sometimes called "optical

paper" or "digital paper", because it feels like paper. It may be used either in as a disk or as a

tape.(14)

Digital paper is a new recording medium developed by ICI Imagedata, Wilmington, Del. It is a

high density flexible optical data storage media that can be made into tapeor disk form. Digital

paper is a WORM media based on dye polymer layer sandwich between a metal reflective layer and

an overcoat layer. A ,'effectivity sensing system similar to that of optical disk systems would be

used with this media. Figure 6 shows the structure of the paper.

The optical paper can be employed either in a taperecorder format or in a disk format. In the disk

format, one can take advantage of the flexibility of the paper by using the Bernoulli effect to

position the paper. See Figure 7. The Bernoulli effect produces lift when air flows faster over the

upper surface of the disk than under it. The lift makes the disk "fly" at a close and constant

distance from the Bernoulli plate and record head. This is a very advantageous feaze. The disk

format may be considered to be a subset of optical disk technology.

Creo Products Inc. of Vancouver, British Columbia is working on an optical tape recorder system

with a 12 inch reel of 35 mm wide optical digital paper tape that is 3 mils thick. A tape 880 meters

long can store 1 Thyte of data with an average access time of 28 sees. The data rate of this system

is 24 Mbits/sec.
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An optical disk system using the flexible digital paper made into disks as removable media is being

developed by Bernoulli Optical Storage CO. (Boulder, CO). The same principle they use in their

well known magnetic disk drives, the Bernoulli Box, will exploit the mechanical flexibility of the

digital paper media. A system with 5.25 inch 1.2 Gbyte data cartridges, 30 milliseconds access

times and 6 Mbits/sec data rate is planned.

Lasertape Systems Inc. of Campbell, California, is developing a high capacity, camidge based

digital optical tape system. The system is to be compatible with the IBM 3480 magnetic tape

cartridge. A single cartridge is to have 50 Gbytes capacity with a data rate of 24 mbits/size,

expandable to 40 mbits/sec. Access time to any 200 Mbyte segement is 15 sec and within a 200

mbyte segment is 2.5 seconds. The manning system to be used on the optical tape system is an

acousto-opfic scanner which will allow for an inhe_dy r_gged design. Inccease of data rates of up

to 100 mbits/sec are possible by increasing the tape speed.

Both of these approaches will have the same inherit ruggedness as the optical disk that include

unlimited number of read cycles, a permanent nonalterable record, long archival life of the media

(>10 years), and freedom from worrying about head crashes and castastrophic damage to the data.

The Bernoulli system in fact is less complex then that of the standard optical disk system because it

does not need to have a focus servo system since the head rides on a cushion of moving air a few

micro inches from the media. Presently no company is working on developing ragged military

units using either of these approaches.

Because of the decreased distance from the media to the outer protective layer, dust and dirt

particles become a more serious issue than for optical disks, because they will obscure much more

of the converging cone of light. Cleanliness will thus be an extremely important factor for the

optical tape.

The flight system strawman data recording system could be accomplished by an optical digital

paper tape system. The system being developed by Creo would need be reduced in physical size

due to its Terabyte data capacity. A system based on the digital paper disk would need multiple

5.25 inch drives to obtain the 3.2 Gbyte data capacity and 23.2 Mbits/sec data rate or larger

diameter media with multiple laser diodes in the optical head.

For boththeteststandand advancedsystemsu'awmansystemstherequireddatacapacityof 12

Gbytesand datarateof 85 Mbits/secwould requireamultipledrivemultiplexedsystemifthe
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digital paper disk systemwas to beused. The digital paper tape systemcould meet the data

capacity easily but would have problems with the required data rate. Increasing the number of

write and read laser diodes in the system could possibly solve this problem

e. Fiber Optic Memory

Considerable investigations have been done on the use of optical fibers as dynamic digital memory.

Most of this use has been for buffer storage as part of code generation, or serial to parallel

conversion. The extremely high bandwidth of optical fibers supports a very high bit rate.

Potentially a delay line could support mass data storage, but the use of this technology for rocket

engine health monitoring appears to offer little feasibility.

Delay lines as a storage medium were used as digital memory storage in some of the earliest digital

computers. In one early computer a mercury delay line storing sonic pulses acted as storage, such

technology being borrowed from methods of storing analog signals in radar sets of the day. In

such a delay line memory, the pulse sequence is re-injected into the input of the delay line after

being detected at the output. Thus, such a memory is a dynamic memory, and stores data only so

long as power is applied to the support circuitry. Dynamic memory is not desirable for archival

storage as even short power disruptions can degrade data.

The use of tapped fiber optics delay lines for signal processing at rates up to 1 Gbit/sec. has been

demonstrated by Jackson and co--workers(1517). Such programmable delay line buffers may well

be effective in Gbit/sec correlation computers, and may have use in mass data storage if large

factors of data compression are desired. In this case real time correlation of incoming engine data

is compared with signal profiles consistent with known operating conditions. Such signal

processing is probably more consistent with control and crew warning functions than archival

storage, however.

Goutzoulis and Davies have demonstrated programmable fiber optic delay generators at bit rates of

3.85 Gbits per second(IS,19). This work used fiber delay lines as serial to parallel multiplexers.

Such high speed multiplexing may well be useful as an adjunct to high speed mass storage. If

serialbitstrcamshave ahigherbitratethancan be supportedby an otherwisedesirablemass

storagetechnology,fiberopticmultiplexerscouldbe usedtoconvertthesinglebitstreamtoa

number ofparallelchannels,sothat,forinstancea sixteenbitword protocolcouldbe recordedin

parallelon sixteenchannels.
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The design of a fiber optic delay line memory for a bit serial optical computer has been reported by

Sarazin, Jordan, and Heuring_20). In keeping with its use with a demonstration optical computer,

the researchers from University of Colorado desired to keep electronic components to a minimum,

and optical components to a maximum This forced the use of very expensive optical switches,

and prevented the use of as many repeaters as might otherwise bc desired.

Further, the design called for synchronous operation. In a synchronous delay line the uncertainty

in propagation time limits the length of the delay line, since the pulse must exit the line within a

fight tolerance of the timing of clock pulses. The investigators found that changes in refractive

index due to temperature limited the maximum length of the fiber, and hence the number of bits

stored. Increasing the write frequency does not help in fiLLscase, since the higher bit rate decreases

the tolerance of timing. Still, the design, which is to be built, represents the first actual design of a

fiber optic delay line to serve principally as a computer memory.

As a prclirrdnary concept, a single fiber could'be used to store the 1140 seconds of data. A laser

diode driven by the 8.5 Mbps bitstream writes information into the fiber. The length of the fiber is -

long enough so that all the bits arc written during data taking in one cycle. A receiver at the end of

the fiber detects the bit pattern, and rewrites the signal through the laser. The delay line would

operate asynchronously, overcoming the problem of refractive index changes mentioned above.

An asynchronous delay line has more ove_cad bit structure due to sync pulses and other frame

defining codes, but we feel this is more thafi compensated for by the longer fiber lengths allowed.

This concept does requireavery long fiber,2.28 x I011m inordertohold the 26 gigabitsof data.

A fiberthislong willobviouslyrequirea largenumber of repeaterstoregeneratethepulseswithin

the line.We have used a value of one thousand kilometersbetween repeaters.Although thisis

long compared topresentcommunications systems,such a lengthmay become practicalwith fuun'c

advances in fibers.Further,the size,weight,and costof the memory system isdominated by the

fiber, and relatively insensitive to the number of repeaters. The only system resource highly

dependent on the number of repeaters is power consumption.

Hgure 8 illustratessuch amemory storagedevice. Such a memory unitispatentlyimpractical for

shuttle(oralmostanything else),with a volume of 760 millioncubicinches,a weight of 70 million

pounds, and an estimatedrecurringcostof 57 billiondollars.

The very high bandwidth of fiber can be used in multiplexing schemes to reduce the fiber length.

The two major techniquesarctimedivisionmultiplexing(TDM) and wavelength division
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multiplexing (W'DM). If sixteen discrete laser wavelengths can be found, with a separation of

wavelength adequate to remain separated considering dispersion in the fiber, the data words could

be read in paraU¢1. This WDM scheme would reduce the fiber length by a factor of sixteen.

System complexity would be substantially increased, and the repeaters would be much more

expensive. Still, the number of repeaters would likely be reduced by the same factor of sixteen.

System costs may not be substantially reduced, because of the complexity of the repeaters. Still,

size and weight of the system would definitely be reduced. Figure 9 is an illustration of such a

wavelength multiplexed scheme.

Tune division multiplexing is feasible because optical fibers can support a much higher bit rate than

what is called for in STS MDS requirements. Figures 9 and 10 illustrate a time division multiplex,

or "packet" scheme.

The TDM memory of Figure 9 looks quite similar to Figure 8. Not visible in the figures is the fact

that Figure 9 contains an order of magnitude fewer loops and repeaters than Figure 2-8. It also

contains the data buffer and frame formatters. These additional blocks do increase the complexity

of the system, but this additional complexity does not add much to resource utilization, so that

most resources are reduced by an order of magnitude.

The data buffer is a key concept that allows the TDM system to operate with a steady bitstxeam of

data to archive, and works because the incoming data rate is considerably less than can be handled

by state of the art digital circuits. In fact, a fiber optic buffer may well be used here. In operation a

normal input data word takes 0.69 microseconds. This data is stored for a short time, and written

to the transmitter upon command of the formatter logic in 0.065 microseconds. The write word

time is more than an order of magnitude shorter than the incoming data word time in order to allow

packet sync and ID bits to be added.

As can be seen in Figure 10, a frame of data contains 10 data words plus frame and packet sync/ID

pulses. This overhead is not a problem considering the rates at which data has already been

demonstrated in fiber optic delay lines. The system operates asynchronously, and hence

uncertainties in exact propagation time of a flame are of no importance.

In operation the data is always written into packet 1. The storage time of the loop is 114 seconds,

one tenth of the engine operation time. At the end of the first cycle, at 114 seconds, the data from

the receiver is rewritten into the delay line, but now in packet 2. Incoming data is still written into
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packet I. At the end of each cycle the old data is shifted into the next higher packet. Packet I0

only contains data during the last write cycle. Beyond this point, data fi'om packet I0 is now

written into packet I, and the loop will continue to recirculate as long as power is available.

Table 9 shows the parameters estimated for a fiber optic delay line memory using _n TDM packets

for the flight system. The total delay needed is 1/10 of the write time or engine operation. An

approximate value for speed of light in a typical fiber results in a propagation speed of about 2 x

108 m/s. This results in a fiber length of 23 million kin. An estimated 22,800 repeaters would be

required even for the best low attenuation fibers and most sensitive detectors anticipated in the near

future. Even so, the resource usage shown on Table 9 is totally dominated by the fiber.

Resources for the repeaters, buffers, and other functions alter the system costs by less than I part

in I000, below the accuracy we can estimate to. The size, weight, and cost shown do not include

su'ucmre. The tremendous size of the device led to a feeling that further conceptual design to refine

structural contributions to resources would not be warranted. Things could only get worse.
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Table 9

Resource Usage

Fiber Optic Delay Line Memory

Totalfiberlength= 2.28 x I0I0 (I)

Fibervolume = 8.7 x 107 in3 (2)

Fiber weight = 7.8 x 106 (3)

Fiber cost = $5.7 x 10 9 (4)

Total system;

Volume, weight, and cost essentially as above

Power = 4.5 x 104 (5)

Error rate= 1 x 10"6

Permanence = 1000 hr.

Write cycles= 106

Read cycles= 4 x 105

Reusability= .Ihr.

Estimateddevelopment cost= $20 M

(I) 114 seconds, n = 1.5 (v = 2c8)

(2)250 l.tmdiameter fiber

(3)density2.5 g/cc

(4)$0.25/m

(5)22,800 repeatersat2W each

T
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f. Optical Heterodyne

Optical heterodyne techniques are not, in themselves, a mass storage technique. Rather, optical

heterodyne technology can be applied to other mass data storage techniques, primarily optical disk

and holographic memories. This section will include brief discussions of how optical heterodyne

may be applied to these technologies. There will be no evaluation of the technique against the

requirements for HMC, however. The advantages of heterodyne operation will be considered as

part of optical disk and holographic techniques, and the evaluation included as part of these

technologies.

Optical Heterodyne in Disk Memory- The technique of persistent spectral hole burning allows the

storage of more than one bit of information in a given location on an optical disk medium, the

information being separated by spectral wavelength. In a sense, the storage location is a color

center, the color of absorption being determined by the writing laser. The bit position is defined by

color or wavelength, and the presence or absence of absorption at that wavelength determines

whether a one or a zero is present for that bit position. The color absorption bands are extremely

narrow, and it is estimated that the use of wavelength as an added dimension with this technique

could increase optical disk storage area density by as much as three orders of magnitude('21) The

read laser power must be kept low in use of this technique to prevent spectral broadening of the

absorption lines. This limits the signal to noise ratio obtainable.

One technique for obtaining optimum read signal to noise is to use heterodyne detection,

modulating the read laser at microwave frequencies, and beating the received signal with the

modulating signal, a homodyne approach, with coherent detection the result(19). While the long

term potential of this technique does promise increased data storage density, the technique is still at

a very early stage of development. Further, to date all research on the phenomena of spectral hole

burning has been limited to materials at cryogenic temperatures, limiting the utility of mass data

storage techniques using this technique in space vehicles.

Heterodyning in Holographic Readout- Mezrich and Stewart have described a heterodyne readout

for read-write holographic memories which improves the signal to noise ratio of the readout

process(22). The technique uses a convention_ _te process. For readout, however, two beams

are used. One is a modified object wave created by illuminating the page composer with all the bit

locations open. A second reference b_ s__ul_co_ u:slz_illuminates the ho!o___Ei_'ther of the

beams or both are modulat_ (if both beams are mod_at_ the modulation frequencies are

different). The received readout signal then contains modulation beat frequency that is processed
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with the appropriate filter circuitry. This work was funded by NASA under contract NAS8-

26808.

The experimenters found that phase modulation of the reference beam contributed signal to noise

enhancement without contributing unreasonably to the complexity of the setup or the need for

extreme structural rigidity (needed for amplitude modulated readout). This enhancement technique

would be a variant of holographic storage technology, and hence no evaluation of the technique

will be done in this section.
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2. Magnetic Technologies

Magnetictechnologies,particularlymagneticdisksand tapes,representestablishedtechnology.

Magnetictapes,inparticular,areusedforHMC MDS forthecurrentSSME. Thesetechnologies

havetobc consideredasthebaselineofwelldevelopedapproaches.

a. MagneticHard Disc

Magnetic hard discs represent a mature data storage technology. A magnetic field confining head is

flown over a spinning platter coated with a thin magnetic media. Bits arc written by applying a

focused magnetic field which orients magnetic domains within the media. The state of the bit is

read by measuring the magnetic field created by the orientation of the domains. Storage density is

dictated ultimately by the domain size of the thin film material on the platter, but in practice rotation

speed, coercivity of the media, closeness of the magnetic head, and head field confinement

combine to limit storage density. The storage densities of the present state of the art, ,,, 7Mbits/

cm 2, are expected to be improved by another factor of two before media limitations arc reached.

The magnetic hard disc system used to evaluate the technology in this report is made up of four

commercial 5 1/4" commercial drives installed in a ruggedized chassis. The final system has a total

capacity of 4 times the capacity of an individual drive with a data rate equal to the data rate of the

individual drives. The present maximum capacity of a single chassis is roughly 4 Gbytes with a

data rate of 15 Mbits/sec. Very large capacity storage systems will require either increased drive

capacity, an increase of a factor of 2 may be possible, or a combination of multiple chassis. The

data rate of the system can be increased by a combination of buffering and multiplexing or parallel

bus architecture. This would be required to mcct the 85 Mbit/scc rates nccdcd for the Test Stand

system. The buffer/MUX controller is not presently available and would have to be designed and

built for this application.

The environmentallimitationsofmagneticharddrivesystemsareprimarilydue tohead-media

spacingrestrictionsand thesusceptibilityofthemediatomoistureandthermalvariations.

Vibrationand shockdampeningmust bcperformedinordertokeep themad/writeheadsproperly

spacedfrom themedia.The raggedize.zlchassissystemdoesthisforthedriveunitasa whole as

opposedtoruggedizingeachdrive.Moistureand temperaturearccontrolledwitha combinationof

cavityscalingand airflow.
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The commercial drives/ruggedized chassis system has the advantages of low cost an high capacity

since commercial drives are used. The limitation of the system is that the ruggedizadon can only

go so far. This system could not, for example, be engine mounted without extensive additional

ruggedization. The other potential limitation of the system is the relatively low data rates, but the

buffer/MUX system described above should solve this problem

b. Magnetic Tape Drive

Digital magnetic tape storage is also a vex), mature data storage technology. The present mass data

storage system on the shuttle uses this technology. Magnetic tape systems have the advantage of

very large capacities, bigger tapes equate direcdy with more storage capacity, and very high data

rates due the the multiple scanning record head technologies used for writing the data. Data rates

can be increased by increasing the tape speed or the scanning speed of the head. The primary

disadvantages of tape systems is data access, since the data is stored sequentially on the tapes and

the tapes are typically thousands of feet long access times are measured in minutes, and power

consumption, which is large due to the mass and speed of the tape. Since this application is

primarily archival in nature, and thus does not have severe access requirements, the access time

limitation is not significant.

The tape drive system baselined for the technology analysis is a ruggedized 42 Gbyte tape system

which can store data at rates up to 107 Mbits/sec. The environmental issues which strongly impact

magnetic tape systems are the same as for the magnetic hard drives. Vibration resu'icdons are not

quite as stringent because magnetic tapes record heads are actually held in contact with the tape and

therefore the head-to-media spacing is more easily controlled. The contact also reduces the life of

both the tapes and the record head, however. Humidity and temperature control are again handled

with air flow and sealed chambers.

The magnetic tape systems do not offer technology development, storage densities are again within

about a factor of 2 of the theoretical limit and the recording technology is very mature, but they do

offer well understood and tested systems.

l_,eMm_ 61



3. SolidStateMemories

Solid state memory technologies are memory systems which have no moving parts and typically

take are manifested as eleca'ordc devices. Solid state memory units are monolithic and are

fabricated using VLSI fabrication technology. These memory technologies are characterized by

very fast access times (on the order of I _ec to 100 nsec), high densities (105-106 bits/era2), very

low power requirements, and 2-dimensiom] smeturc. Although 16 Mbit RAM chips presently

exist, the packaging problems involved in putting together mass storage systems with Gbyte

capacities is not trivial. A 4 Gbyte system, for example, would require 1000 16 lvlbit RAM chips.

The size and weight of the resulting system may not be prohibitive to this application, but the

present cost of solid state memory systems very quickly becomes excessive when compared to the

costs of the the magnetic and optical systems. Further, the archival nature of this application fails

to use one of the biggest assets of the solid state systems, the short access times.

Since solid state memory systems have no moving parts, the vibration and shock requirements of

the environment are typically not a significant problem. The shock and vibration will impact

packaging, however. Shear forces will restrict methods such as die stacking and multi-chip

modules. Unlike magnetic and opticalmemory technologies,solidstatememory technologiesmay

be subjecttoradiationdamage. Since thisapplicationisspace based some ofthe solidstate

memories may requireadditionalhardeningtocosmic radiation.

The paragraphsbelow describethebasicconceptof each solidstatememory technology analyzed

and givestheproductinformationupon which thetechnology system datawas exwapolated forthe

technology review.

a. RAM

RAM isthe acronym forRandom Access Memory. Most solidstatememories arerandom access,

but in this case RAM will refer to solid state memory which will retain its information only as long

as power is supplied. This of course is a severe restriction with significant implications to system

reliability and survivability. Figure 11 shows schematic and cross-sectional diagrams of a

dynamic-RAM storage cell. Charge is stored in the capacitor etched in to the glass substrate. The

glass capacitor is leaky so the charge must be refreshed by application of voltage. At present one

can buy 20 Mbits of RAM on a single 6" wafer. This product was used to extrapolate the size,

weight, power, and costs of the Gbyte systems requh'ed for the mass data storage unit. RAM
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systems are one of the solid state memory technologies which wi_ be subject to radiation damage

and should therefore be hardened.

As an example of the current state of the ax'tin space-qualified semiconductor RAMs, Se.aka"

Engineering, Inc., Torrance, CA, offers recorders with 4-32 btbytes of data storage. The 8 Mbyte

unit has dimensions 3.4 x 6.4 x 7.5 inches and weights 9.2 lbs. Its mmdmum continuous data rate

is 4 Mbits/sec. It should be possible to expand these memory units to the 128 Mbyte region easily.
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b. EEPROM

Electrically Erasable Programmable Read Only Memory (EEPROM) is a solid state memory which

will retain the bit information after power loss. EEPROM's store the bit information in the form of

stored charge in the memory cell and, like RAM, they are susceptible to radiation damage. Figure

12 shows a cross-section diagram of an EEPROM memory ceil. EEPROM's can be written and

erased many times, although _e number of write cycles is 8-10 orders of magnitude lower than

bubble memory or FRAM technology. Presently 1 Mbit EEPROM's are available and this chip

size was used to extrapolate the resource usage of the EEPROM mass storage system.

Although the access times for EEPROM's can be as low as 150 nsec, the write times for a 16 bit

word arc on the order of milliseconds. These write times translate to data storage rates of only 104

bits/see and therefore EEPROM is not a candidate technology for any of the applications reviewed

here unless very extensive and sophisticated buffering and multiplexing is performed. Such

buffering and multiplexing is possible, but the complexity of the storage system will become

unwieldy.

c. FRAM

Ferroeleca'ic Random Access Memories (FRAM) are a hybrid of fen'oelectric materials and s/I/con

based RAM technologies(23). The bit information is stored in the electronic polarization of the

memory cell. The cell contains a thin ferroelectric film like KNO3 or PZT (see Figure 13). The

individual crystals of the ferroelectric films have two polarization states which can be toggled with

the application of an electric field. Once the polarization of the crystals/film has been set it will

remain polarized until another electric field is applied. The state of the bit is read by applying an

electric field and measuring the transient current response. The polarization of the crystals will

dictate the size of the resulting current wansient and thus the state of the cell. The ceil is re-written

to restore its original state.

The big advantages of the FRAM technology is that the information is stored as crystal

polarization, not a charge configuration, and is inherently radiation hardened and the read/write

timesareon theorderof I0 nsecgivingthedevicesextremelyhighbandwidth.Like magnetic

memory technologies, FRAM systems are temperature sensitive. Present products are limited a

range of 0-70°C but are expected to have full Mil-Spcc temperature ranges, -55 - 125°C, soon.
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FRAM technology is relatively new and is only available in 8Kbit chip at this time, although 1 Mbit

chips are expected by the end of 1991. The extrapolated resource usage reflects this minimal state

of development.

d. Magnetic Bubble Memory

Magnetic bubble memory has been cited as a potential rugged replacement for magnetic disc and

tape systems since its conception at Bell Labs in the early 1960's. Magnetic bubble memory is a

solid state memory in which localized regions of oriented magnetic domains arc formed in a thin

magnetic film, typically garnet or permalloy (see Figure 14). The oriented domains repel or attract

each other, depending upon the orientation of the neighboring domains, and will try to expand or

contract a given oriented bubble until the bubble disappears. If an external magnetic field is

applied, a minimum bubble size becomes thermodynamically preferred and single bit storage

bubbles result. In thin garnet films the bubble diameter is on the order of.0001 in. Presently 1

Mbit/cm 2 storage densities are achieved in bubble memory systems.

The bubblesarewrittenand readby moving them aroundthechipinsequencewitha rotating

magneticfield(seeFigure15).As a givenbubblepassesthemagneticread/writelocationinthe

chiptheappropriatefunctionisperformed.Becausethesystemhasno movableread/writehead

theentirestringofbubblesmust bc moved withrespecttotheread/writelocation.Largecapacity

systemscouldhaveaccesstirneson theorderofseconds.Advanced chipdesignand bubblestring

management haveresolvedthisproblem,however,and IMbit bubblememories canhave access

timeson theorderof15 msec withpropersuingmanagement.

The biggest advantage of bubble memories when compared to magnetic disc and tape systems is

ruggedness and reliability. Like all of the solid state memory technologies the lack of moving parts

make the memory technology inherently more robust. When comp_ to other solid state memory

technologies, bubble memories have the advantage of not being susceptible to radiation. Bubble

memories are more susceptible to shock and temperaun'e variation than FRAM because of the

properties of magnetic thin films, but are still more robust than the m_h_cal system. The biggest

disadvantage of bubble memory systems is their limited data rates. The sequential accessing makes

the bubble systems inherently slower than the random access solid state memories. Present

systems can achieve 1 Mbit/sec data rates but only with significant power consumption. Further

increases in data rates will require linear increases in power consumption. A 1.2 Mbyte bubble

memory cartridge product used in a buffered/multiplexed system was used as the baseline for the

Flight System and Test Stand technology comparisons.
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The most recent development in bubble memory technology is a new way of storing bit

information called Vertical Bloch Line memory (VBL). VBL stores bit information around the

walls of the bubbles in the form of Bloeh Lines of polarization. Storage densities of 0.5 -1

Gbit/cm2 are expected to be achieved with VBL technology. Very high data rates will still be a

problem for these systems, however. VBL technology was used as the baseline bubble technology

for the Advanced Vehicle portion of the Technology Review.

Bubble memory technology has the potential as a high density, inherently rugged mass data storage

technology. However, a lack of development resources and advances in conventional magnetic,

optical, and solid state memory technologies like ferroelectric RAM have slowed the development

of bubble memory technology. Consequently the costs of the bubble systems and their further

development are very high.
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C-26. The Rating Process

In our evaluationof thecandidatetechnologies,we adopted thefonowingapproach, in orderto

account forthetradeoffsthatcan be made between variousrelevantfactors.(For example, the

capacityofan MDS system can be increasedby addingmore units,but ata costinresourceusage,

e.g.increase.dsize,weight,etc.Or, inordertomeet environmentalspecif_:ations,a memory unit

could be enclosedinan elaboratetcmperatum-controUedvibration-isolatedpackage, but this

package could be unacceptablefrom the standpointof sizeor cost.)The totalrequireddatacapacity

and datarateand theenvironmentalfactorsaretobe Ireatedasreqtfirementsthatmust be met, i.e.

the system must have enough totalcapacitytoperform itstaskand itmust operateintheprescribed

environment. A technologythatcannotmeet thetotalcapacity,datarate,orenvironmental

requirementsunder any conditionswillbe rejected.During Task WI, we definedspecificsystems

usingthevariouscandidatetechnologies,so astomeet theseminimal requirements.Then the

distinguishingfactorswere issuessuch as theresourceusage and riskassociatedwith the

development of thetechnologies.

The weighting factors for each parameter defined in Task If, the definition of requirements for

MDS technology, were presented in Table 8. They were presented for three scenarios:

• Currentflightvehicle(thespace shuttle)(we evaluatedthison thebasisof threeengines)

• Ground teststand

• Advanced launchvehicle(we assumed 10 enginesforthisscenario)

The categories of data storage and environmental catability are treated as binary go/no go

requirements, i.e. a candidate technology which cannot meet the minimal requirements was not

considered further.

The othercategorieshave theirindividualfactorsweighted inimportance accordingto a scaleof

weighting factorsdefinedby Table 8. This tablerepresentsour consideredjudgement about the

relativeimportance of thevariousfactors.These factorswere used inTask HI as weighting

factors,wi. For a candidatetechnology,we defineda system configurationwhich could meet the

datacapacityand environmentalrequirements.

The performance of a given system was evaluatedand given a score,si,relativetothe minimum

requirements.The scoringsystem and the scores,si,aredefinedinTable I0. We thenevaluated

thevariouscandidatetechnologiesby forming the sums siwiforeach specifiedsystem.
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Table 10 represents the scoring system on a scale of 0 through 5 for each of the relevant

parameters. The table was generated by starting with the rezluircmcnts derived in Task I1, and

assigning the minimum acceptable value a low score (usually 0, but 2 in the case of resource

usage, because the system is reuqired to have increased capacity, so some increase in parameters

like size could be allowed). The scoring range was spre._l over what we judged to be a reasonable

range that couldb¢ accomplished for the particular factor, usually one order of magnitude. A few

factors (survivability and growth potential) have scores described in qualitative terms, rather than

quantitative.
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The results of the evaluation for each candidate technology arc p_6nte, d in Tables 11, 12 and 13

for the three scenarios.

InTables11 through13,theleftcolumn names theparameterconsiderationand thesecondcolumn

givesthevaluesdesiredforthatparameter.Thesearcthevaluesthatwere derivedduringTask If.

The thirdcolumn presentstheweightingfactorassociatedwiththeparameter,alsoasderivedin

Task II.Then,foreachtechnologycandidate,named atthetopofthepage,them am threeclumns,

which giveourconsideredopinionforthevlatmoftheparameterinthegivenscenario,itsscore

accordingtothescoringrangesestablishedinTableI0,and thentheweightedscc_ (thescore

multipliedby theweightingfactor).The totalscoreislistedatthebottom,fortheparticular

technology.

Inordertoalloweasiercomparisonoftheresults,Table14 compilesthetotalscoresforeachofthe

threescenarios,indecreasingorderforeachscenario.

The resu/tsinthistableshow thatthescoringvaluesfordifferenttechnologieschangesubstantially

accordingtothescenariowhich isbeingconsidered.Inaddition,candidatesfrom eachofthethree

differentareas(optical,magneticand electronic)rankedhighineachscenario.

Table14representstheoutcome ofourformalnumericalscoringprocess.Itisapparentthatthere

is not a single absolutely clear "winner" in this process. It is necessary to evaluate and interpret the

meaning of this table critically in order to derive a recommendation. In the next section we

describe the interpretation and the evolution of a recommendation for a candidate for technology

development.
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Table 14. Ordered Scoring Ranks

FRAM

Magnetic Disk

opti Disk
OpticalTape
RAM

Commercial OpticalDisk

Magnetic Bubble

Magnetic Tape
EEPROM

OpticalCard

Holographic

FiberOptic

24O

227
225
216
200
192

153
144

138
121

81

Ground Test System

optical Tape

Magnetic Disk
opticalDisk
Magnetic Tape
FRAM

Commercial Optical Disk
EEPROM

Magnetic Bubble
OpticalCard
RAM

Holographic

FiberOptic

243

219

202

190

186

182

180

176

168
167

161

84

r

Advanced Vehicle

FRAM

EEPROM

RAM

Magnetic Bubble
Commercial opticalDisk

opticalTape

OpticalDisk
Magnetic Disk

Magnetic Tape

Holographic

OpticalCard
Fiber Optic

253

236

228

214

210

208

201
166

163

153

116
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C-Pc. Recommendation for Technology Development

The centralobjectiveofthisstudyprogramon MDS technologyforrocketengineHMC isto

developa recommendationforthebestcandidate(s)fortechnologydevelopment.Inthissection,

we describethedevelopmentoftherecommendation,basedon therequirementsdefinedinTask II

and on thetechnologysurveyand evaluationdescribedintheprevioussection.

The rankings for the different technology candidates vary from one application scenario to mother,

and there is no single top candidate that emerges clearly ahead of all others. Thus, it is necessary

to perform a critical evaluation of the ranking system in order to develop a recommendation.

First,we notethatwithina particularscenario,two technologieswhichdifferintotalscoreby a

smallnumber ofpointscannotclearlybe differentiatedwithrespecttoone beingbetterthanthe

other.The assignmentofscoresforparticularparametersisa matterofjudgement,and therange

oferrorfora particulars_re couldreasonablybe estimatedas10% ofitsvalue.Thus,the

rankingsareprobablyaccuratewithrespecttotheidentificationofleadingcandidatesandpoorest

candidates,butone cannotdistinguishclearlytheexactorderoftwo adjacentrankings.

Second, the technology development recommendation probably should not give great weight to the

ground test scenario. This is an application for which the storage needs can be met with existing

technology, simply by adding additional magnetic recording devices. The technology development

recommendation should be driven by the requirements Of a flight system.

Of the two Right systems, the requirements for the current flight system are by far the better

defined. There are no firm specifications for the advanced vehicle, and although we have

developed working values for parameters such as the total capacity and data rate, these values were

derived from generalized arguments, whereas for the current flight system, the values come from a

much better defined analysis of the specific sensors characteristics that are employed. Although it

may be argued that the recommended technology may not be developed and space qualified in time

to become the HMC MDS on the space shuttle during its remaining life, the quantitative

requirements of that system are on a much fmner basis than for the advanced vehicle.

The rankings for the current system indicate a group of 6 top technologies, ranked fairly closely,

within about +10% of their average value. These are the FRAM, the magnetic disk, the optical

disk, the RAM, the optical tape and the commercial optical disk in a chassis. Below that there is a

substantial gap, large enough to be considered real, before the next candidate (magnetic bubble).
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The recommendation shouldcome fi'om the top group of six. Thus, the scoringprocess has

identified a group of technologies which arc significantly poorer than the leading group and which

may be dropped. The _'adcoffs between positive and negative features in the group of six leading

candidates are summarized in Table 15.

One may make the argument that the evaluation process, as we have defined it, may have allowed

unsuitable candidates to be included in the final ranking. In order to handle the question of how to

achievetherequiredcapacity,we usedtheprocedurethatthenumber of units couldbc multiplied

by as large an amount asneeded to achieve the _requiredcapacity. Then the resourcerequirements

forthattechnology would increase.Thiswould causethetechnologytoreceivelow rankingsin

requirementssucha size,weight,etc.

In inspecting the results closely, we see that the electronic technologies (RAM, FRAM, EEPROM,

and magnetic bubble) generally scored well in the areas of size, power and weight. This is despite

the fact that many units had to be multiplexed in order to achieve the capacity. But the cost of the

total package has become very high, up to $20M per unit for the FRAM. This means that the

FRAM scored a zero in cost. But any technology judged to cost over $400K received a zero, and

the scoring system, as set up, did not punish the excessively high costs adequately.

Thus,among thedifferingbasictechnologies,theelectronictechnologiesarejudgedtobe

unacceptablebecauseoftheirveryhighcost,bothdevelopmentcostand therecurringcostperunit.

One might argue even that the EEPROM should not have been one of the surviving candidates, in

that its intrinsic 1 millisecond write time makes it unsuitable. In order to achieve the data rate, it

was necessary to link 23000 devices via a parallel buffer which would probably be an unworkable

solution.

With respect to the comparison between magnetic technology and optical tt,chnology, the magnetic

technology (disks and tapes) is extremely mature. Magnetic technology derives its relatively high

scores at least partly because it has been worked extensively over a period of decades. Thus, a

technology development phase as envisioned for the next stage of this program would have

relatively little effect. A larger advance at the cutting edge of technology would be achieved by an

investment in optical technology.
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Table15

TradeOffsAmong LeadingCandidates

Pros Cons

OpticalDisk High capacity,good match

betweencurrentstatusand

requireddevelopment

Relativelyhighresourceusage,

needmore speed

OpticalTape Excellent match to program

requirements

Immamrity

Commc_cial Optical Disks Low risk,readiness No growthpotential

Magnetic Disk High capacity, realiability,

readiness

No growth potential

RAM Small andlight,reliable

!

Much multiplexing,toget

capacity,highcost

FRAM Small andlight,reliable Much multiplexing, high unit

cost, large development

9O
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Among the 6 optical candidates evaluated, the ordering was:

Optical disk

Optical tape

Comn_rcial optical disk in chassis

Holographic

Optic card
Fiber optic

The optical disk and tape were fairly close at the top, followed by commercial optical disk with a

small gap, followed by optical card and holographic with a large gap and with fiber optic ranked

last. Possibly, because of its unreasonable weight and cost, fiber optic systems should not have

reached the final ranking process.

We feel that this rank ordering among the optical technologies is realistic and accurately reflects

their relative attractiveness. The bottom three may be ruled out on the basis of the scoring; the

commercial optical disk in a multiple platter chassis does not represent substantial technology

development and may also be eliminated.

The choice between the final two candidates is difficult. They rank very closely in scoring, too

closely to distinguish clearly between them. They both exhibit extremely atuactive potential for

technology development. For the optical disk, the issues would be increased capacity, attainable

via multiple heads, increased disk diameter and increased recording spee._L For the optical tape, the

main issues would be mggedization and technology maturation.

For a series of follow on programs leading to an actual ground test in 1993, we judge the state of

development and readiness of the optical disk to be superior. We recommend this as the best

candidate for HMC MDS technology development.

The optical tape is an extremely close and extremely atwactivesecond place candidate. If a second

development program can be funded, we recommend this as a subject for that program.

In summary then, our recommendation for the best technology for development as a proof of

concept demonstration for MDS for HMC is an optical disk approach, emphasizing those factors
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required to increase tota.1 data storage capacity and wz'i_g rate above the cm'rent state of the art.

Optical tape would be a close second choice.
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C-3. Project Plan and Specification

The recommendation formulated by Honeywell for the best candidate for technology development

for MDS for rocket engine HMC was optical disk technology. The purpose of this subsection is to

make the recommendation more specific so as to form the basis for a mission-focused

demonstration and test model of an MDS unit which can be constructed over a 20 month period

beginning around January 1, 1991.

The most significant issues which must be addressed in such a proof-of-concept demonstration are

total data capacity and data rate. Requirements for these two parameters for a mission similar to a

space shuttle flight have been defined as:

Total capacity: 3.3 G bytes

Data rate: 23.2 M bits/second

Note that these two requirements are relevant to the useful sensor-generated data that must be

stored. Requirements for formatting, ITacldng, error correction, etc. increase the total storage

ze.quired, probably by an additional 30% or so in typical systems.

The current state of the art for capacity and data rate in ruggedized optical disks is 0.26 gigabytes at

a writing rate around 3 megabits/second. Both these numbers refer to the useful data storage, after

the overhead is subtracted. They are referenced to a single-sided, 5.25 inch diameter disk. It is

apparent that increases by about one order of magnitude in both these parameters are required.

The main technologydevelopmentsthatwillberequiredto achievetheseincreasesinclude

increasesinthedisksize(whileretainingtheraggedness),increasesinpackingdensityon the

disk,increasedrotationspeedforthediskand useofmultiplewritingheads.
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C-3a. CONCEPT DEFINITION

• Short Wavelength Alternative

One approach that could be envisioned involves the use of shorter wavelength laser diodes to

perform the writing function. If one used a blue (or violet) laser wavelength, instead of the present

780 rim infrared wavelength, the diffr_tion-lin_ted focal area of the beam would be reduced by a

factoroftwo and thelinearspacingofthebitscouldbe increasedby a factoroftwo. With a

concomitantincreaseby a factoroftwo inthetrackpackingdensity,thearealbitpackingdensity

would increaseby a factorof4,and a singletwo-sided5.25inchdiskwould holdabout2.08

gigabytes.Thus,a two plattersystemcouldmeet thecapacityrequirement.Becauseofthe

increasedbitdensity,thewritingspeedwould increaseby a factoroftwo fora singlewritinghead.

Ifone envisionstwo independentwritingheadsforeachsideofeachdisk,withthedataproperly

interleaved,thewritingratewould increaseby a factorof8,toapproximately24 megabits/second,

closetotherequirement.

This appears to be an attractive approach in that the requ£red capacity and data rate could be met

with the same size disks that are already in use, and which have already been ruggedized.

Probably currently available recording media could continue to be used at the shorter wavelength.

The absorption coefficient of the tellurium based alloys that are used as the media in current write-

.once-read-mainly (WORM) optical disks is approximately as large in the blue portion of the

spectrum as it is in the near infrared. The issues of ruggedization to meet vibration and shock

requirements would be minimized. The system development would be substantially simplified.

The drawback to this approach is the current status of laser technology, suitable for use as a pump

sara'ca.Thereareno bluediodelasersavailable,nordo thereappeartobe any neartermprospects

fordevelopmentof suchlasers.Therearcsame prospects,withinaperiodofseveralyears,for

compact,efficientbluesolidstatelasers,whichcouldbe coupledtothemedium viaopticalfibers.

There are other requirements for small blue lasers, including projection scanning, high definition

'IV, and underwater communications. There is enough research interest driving the development

of blue laser sources that good devices probably will become available at some point in the future.

The bluelinecouldbe achievedviafrequencydoublingofsemiconductorlasersoperatingnear900

nm. Frequencydoubledsemiconductorlaserswithoutputsinexcessof40 mW at428 nm have
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been reported. The packages to date have been very elaborate and cumbersome, and it will require

extensive development over a period of years to develop effective sources via this approach.

Frequency doubling of Ti:sapphire lasers will also yield sufficient power but the package will be

large. Intracavity frequency doubling of diode pumped Nd:YAG operating at 946 nm has been

demonstrated, yielding 473 nm light, but only at a level of a few row.

As a dark-horsesuggestion,frequencydoublingofCr:LCAF (chromiumdoped lithiumcalcium

aluminum fluoride)isa prospect.LCAF istunableovertherange800-950nm, and is

experiencinggrowthasaresultofextensiveresearchinterest.Thissystemcouldbe made

compact.Thus,thebluelinecouldbe providedby severaldevelopingsystems.

It is our judgement that a suitable blue laser would not be available until three to five years from

now. Thus, an approach that requires such a laser for a demonstration unit that is to be delivered

in 1992 is not appropriate.

Thus, we are led to technology developments in the form of increased disk size or packing density,

while continuing to use infrar_ diode lasers operating near 780 rma.

• Impact of System Requirements

Let us consider the required size of a single large disk with the required capacity, which we will

assume to be about 4.3 gigabytes, including 30% overhead for formatting, etc. Assuming 8 bit

bytes, this means that the total capacity is 3.4 x 1010 bits (1.7 x 1010 bits/side). If we assume a bit

spacing of 1.3 _tm center-to-center along the track and a track-to-wack spacing of 1.6 pan, then

each bit requires an area around 2.08 x 10"s cm2. Within a 3 inch wide band around the edge of a

10" diameter disk, one could store 2.04 x 1010 bits per side. Thus, a 10" two sided disk would

have adequate capacity. There arc, however, several issues that arise in the use of a disk packed

completely with data.

We must consider the issue of variable or constant rotation speed. Several possible formats are

possible, as illustrated in Figure 16. The left side of the figure shows the case of constant angular

velocity (CAV), with the bits arranged in concentric circular tracks. At the center of the recorded

area, the spacing of the bits is 1.31ara. But as one goes toward the edge of the disk, the linear

velocity increases and the bit spacing also increases, so that the total storage capacity decreases.

One may increase the capacity by modifying the format. If one divides the recorded area into

bands (say 6-10), with the bits in the innermost track of each band spaced at 1.3l_rn, the capacity is
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increased. This case is illustrated in the center portion of the figure. A third possibility is constant

linearvelocity(CLV), withthebitspacingheldat1.3lamalongallthetracks.Thiscaseisshown

intherightportionofthefigure.The rotationrateisdecreasedasone goesfrom thecenterofthe

disktowardtheedge.

If we were choose to have the rotation speed constant, then the bits become more widely spaced

along the track near the periphery of the disk, and the total capacity of the disk decreases, to 1.2 x

1010 bits/side if no banding is used. If one does use banding and discontinuously variable rotation

speed between bands, the capacity increases to 1.9 x 1010 bits per side (for six equal bands). Thus

witha teninchdiameterdisk,therequiredcapacitymay be obtainedwitheithera constantlinear

velocityformatora bandedformatwithconstantangularvelocitywithineachband.

The alternatives thus appear to be either using a disk with diameter greater than 10 inches (with

attendant problems in ruggedization) or using a banded system or a tinear velocity system (which

necessitate a variable rotation speed). The linear velocity alternative appears to be compatible with

the NASA mission requirements.The hits could be configured in a single spiral track. The data

flow would be in the form of a continuous bit stream, and there will be no need to jump between

tracks. Thus, the control system could be substantially simplified, because it would only have to

follow a single spiral track from the center of the band to the edge (or vice versa).

A second issue is that one must allow for the fact that the write head can jump tracks, perhaps a

number of tracks at a time, in response to a shock. Thus, each track must have an identifying code

which enables the system to determine which track it is following and allows the free tracking

system to make the necessary corrections. This issue would favor the use of a banded system,

with constant velocity within each band.

• Constant Linear Velocity (CLV) Alternative

We first examine the characteristics of the CLV alternative, with the single spiral wack of data. Let

usconsiderthequestionsofdatarate.Inthesinglespiraltracksystemdescribedabove,withthe

bit spacing along the track equal to 1.3 gin, at the outer edge of the disk, the length of the track

would be 79.8 cm and the number of bits around the track would be 6.14 x 105. To achieve the

required data rate of 1.16 x 107 bits per second (per side) would require a rotation rate of 18.9

revolutions per second (1134 RPM), a reasonable rate. (This approach assumes that the bits are

interleaved or "daisy chained" between the two sides of the disk in some fashion, perhaps using a

buffer to store blocks of some size.)
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At theinneredge oftheband,therotationratawould havetobe 2.5timeshigher(2835RPM) in

order to achieve the required bit rate. This rotation rata will represent a sul_stantial challenge. It is

substantially above the 1800 RPM currently used. We judge that there would be no substantial

issues of mataial deformation or material strength for a glass disk, but it will be difficult to make

the tracking servos and controls operate fast enough.

The issueoftheconstancyoftherotationrateisalsoimportant.The timingofthesystemcan

become subjecttoerroriftherotationratevaries.The trackingsystemrequiresthereadingof

prerecordedtrackidentification,withthebitsbeingreadata specifiedrate.Iftherotationrate

varies,atrandom,thebitswillnotappearinthecorrecttemporaltimeslotsinwhich theyare

expected,and thetrackidentificationsystemcouldbecome confused.But withmonitoringofthe

bitrate,feedbackand closedloopcontrol,we judgethattherotationratecanbe heldconstantto

within0.1% and thatthiswould notbe a problem.

A suitable form for a 10 inch disk which could be quite rugged could involve a lead screw format.

The runout of the lead screw would provide the coarse tracking. The head would be capable of

fine tracking, over a range of perhaps 25 tracks. The rotation rata of the disk would vary linearly

as the head moves outward (or inward) along a radius of the disk. This configuration is sketched

in Figure 17. Such a system can provide stability to within 0.001 inch even in an environment

with shock and vibration. The corresponds to a maximum error around 16 tracks, which is within

the capacity of the fine tracking system to correct.

Wc alsoseethedesirabilityofusinga direct-read-after-write(DRAW) approachtocheckthe

recordedbitsforaccuracy.Itallowsforinstantcheckingoftheaccuracyofa recordedbit

immediately after recording, and will aid in keeping data rate high. This will require that the head

incorporate two sources.

Thus,one possiblesystemconceptisa singlei0 inchdiametertwo sidedWORM disk, using

currentlyavailabletelluriumalloyrecordingmedia. Itwillrequiretwo independentheads,one per

side, with two light sources per head, and using DRAW. The total capacity would be 4 gigabytes,

but it is possible that the technology demo would require only one side. The diode lasers would be

conventional A1GaAs lasers, operating near 780 nm. The disk would be formatted in a single

spiraltrackina bandcoveringthe outer three inchesofits diameter. The rotationratawould be

continuouslyvariablefiom around2800 RPM nearthecenteroftheband toabout1200 RPM near

theedge.The runoutwould be controlledby a leadscrew.

D= M=r==
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The approach has severalconservativefeatures,including:

• Use ofcurrentlyavailablerecordingmedia

• Use ofcurrentlyavailablelasers

• Simple control,with no motion between tracksrequired

• No significantincreasesinbitdensity

It does represent some challenges including areas which require technology development.

• Use of a large (10 inch) disk which will be difficult to mggedize for vibration stability

• Development of configurations for multiple lasers per head

• Daisy chaining and buffering to allow the data to be written from a single stream via two

writeheads

• Use of a relativelyhighrotationrate(up to 2800 RPM, substantiallyhigherthanwhat has been

used before)

• Development of a continuouslyvariablerotationratedriveand concomitantcontrols

Although this is an attractive embodiment from a technical point of view, it does suffer from a

drawback from another aspect. It is designed fairly specifically fo r this one_ application, of

archival mass data storage. It is not readily adaptable to other applications because it is

uncompatible with any random access. It is essentially a mastering system, aimed at a niche

market. Thus, it may be difficult to find organizations willing to invest the required development

effort to product this system. We judge that these issues _ very significant and that the system

defined above will not be an acceptable choice.

• Banded System

Therefore, we def'me a s_ond system which _ have more versa_ty. Necessarily, this will

require either astorage media larger than 10 inch_ diameter as described above, or a banded format,

rather than a single spiral track. These features will make the memory more versatile and more

compatible with conventional memory requirements.

We judge that requirements of mggedization will increase rapidly with disk diameter, and thus

prefer to work with the minimum possible disk diameter. As we saw before, a ten-inch disk, with

data stored on the outer three inches of its perimeter, in a banded system with six bands and

i00
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constant angular velocity within each band could store 1.9 x 1010 bits on each side. This would be

adequate storagecapacity.Within each band thetrackcould be a spiral.This would be compatible

with theincoming datastreamand would eliminatethenccd to stepn'ackseach revolution.

Let us considerthe writingrateforsuch a system. We require23.2 megabits/second of data,or

about 30.2mcgabits/second ffone includestherequirementsforoverhead. In thecenterof the

innermost band, where the dataratewillbe lowest,we have a totalof 2.45 x 105 bitsinthe

innermost track.At a consexvativerotationram of 1800 RPM, a singlehead would read 7.35 x

106 bits/second.

If the data are stored in an edge-detection format, as illustrated in Figure 18, the bit rate may be

increased.The bitsare storedas grooves,ratherthanindividualpits,one pitper bit.The

presencesof "I" bitsisdenoted by eitherthestartor theend of a groove. This format inprinciple

could increasethe writingrateby afactorof 2,but therearc some limitations.For example, one

cannot have too many zerosina row. Thus, we conservativelyestimatethe increasein datarate

associatedwith edge detectiontobca factorof 1.5.With edge detection,we thuscould have a

datarateof 1.10x 107 bits/second.

In order to reach the required data rate, we postulate the use of writing heads with more than one

write source. If we assume two writing sources per head, and two relatively independent heads

(one per side), the writing rate would increase to 4.4 x 10 7 bits/second, enough to provide the

necessary data rate.

We envision that an efficient manner to use two writing sources on a single head would be to write

on two adjacent tracks, with suitable interleaving of the data. Thus, the concept envisions meeting

the data rate requirements with a head containing two writing som'ces, writing on two adjacent

tracks concurrently. The head would contain four laser sources, two for writing and two for

DRAW. There would be one head for each side of the'disk. The heads would be consmtined to

work within the same band because of the angular rotation rate requirements, but otherwise would

be relatively independent.

The coarse and fine tracking would be very similar to present ruggedized WORM optical

memories.

The disk will require prcformatting, which is an operation that wiU be performed on the entire disk

before any data is written on it. The preformatting will include wack identification, which will
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identifythe u'ackperiodically to thereadportionofthe head and willallow correctionofany errors

intrackpositionby thefineadjustmentsystem. ItwillalsoincludeclockinginRm_aationwhich

willallow adjustmentofrotationratetothecorrectvalue withineach band. This preformatted

informationwould come atpredeterminedpositionsintherotationalong each mice Itispartof

•theoverhead information,ass_ tobe about 30% of theavailabledatacapacity.

As the system fillsthecapacityof one band and moves tothenextband, therewillbe some dead

timerequired,forhead movement and fortherotationrateto accelerateand stabilizeatitsnew

value.We estimatethatthistotaltime may be around 150ms, based on theparametersof current

magnetic disksystems. Thus one would require(atatdatarateof 23.2 M bits/see)an auxiliary

buffermemory with capacityaround 4 M bitsto storetemporarilythedatacoming in duringthe

band change.

In summary, this concept would use a two-sided 10-inch WORM media, banded into six bands

with constant angular rotation rate in each band. The writing head contains 780 nm sources, two

for writing on two adjacent tracks and two for DRAW. There would be a separate head for each

side.

This approach is more like current optical memories in its format, and would be better adapted to a

variety of applications. In particular it would be better suited for applications which would require

random access to the data. It would probably be better accepted by the organizations who would

have to produce it.

In some ways it is more conservative than the first approach defined, particularly in its use of

bands of data with constant angular rotation rate in each band. Also the maximum rotation rate has

been reduced to a conservative 1800 RPM.

The technology development challenges in this design include:

• Ruggedization of a 10-inch disk system

• Development of heads with four very closely spaced sources per head

• Development of optics to focus two sources in a head on adjacent tracks

• Daisy chaining and multiplexing to allow data to be written from a single data stream via two

different heads and four sources

* Development of 10-inch glass disks with WORM recording media
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We noteexplicitlythatthistechnologydevelopmentiscompatiblewithrealtimeaccess,although

thatwas notone oftherequirementsfortheHMC application.But theavailabilityofrealtime

accesswould providemore versatilityandwould allowthesystemtobe usedinotherapplications.

Also, despite the fact that the recommended technology emphasizes use of WORM media, it would

be compatible with rewritable media as they become more available. It is, in fact. a development

that would enhance the use of rewritable media systems.

This banded system represents our recommendation to be developed for the proof of concept

demonstration.Inthistechnologydevelopment,thecriticalfeatureistheincreaseofthedatarate

by aboutone orderofmagnitudeabovewhat isnow available.

• Reduced Scope Alternative

In our analysis of the tasks required to develop the recommended proof of concept demonstration,

and the level of effort required to perform them, we have defined a substantial program (see next

section). Therefore, we have also defined a smaller, lower-cost alternative program. This

program envisions that the main emphasis would be development of the four-source head (two for

writing and two for DRAW) which would be required in the recommended program. However,

the other development tasks would not be undertaken. This reduced-scope program would employ

an existing 5-1/4 inch WORM optical memory unit. and would replace the current head with the

four-source head. The emphasis would be to show that the new four-source head could perform

the recommended writing and DRAW functions, multiplexing the data from the single data stream

between the two writing sources. In particular, there would be no development of focusing and

tracking controls.

The essentialportionofthisdemonstrationwould be toshow thatthewritingrate,which isone of

thelimitingfactorsincurrentWORM technologyfortheHMC application,couldbedoubledby

useofthedualwritingsourcesina singlehead.

C-3b. TASKS FOR DEVELOPMENT

• Recommended Program

In a proof of concept demonstration, expected to extend over a 20 month period beginning near the

end of 1990, we consider that the main development tasks would involve development of the four-

source head, a rotational drive, and a focus/tracki_n.g scrvo control. In addition, the electronic
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interfacing, buffering and control necessary to split the single data stream between two writing

sources would be developed.

Table 16 shows elements of a work breakdown smacture necessary to accomplish this. It also

includes a judgment about the number of person hours necessary to accomplish each task, laid out

by month. The staffing includes several labor grades, including program managers, senior

engineers, junior engineers and technicians. Design tasks would require a preponderance of

engineering talent, whereas fabrication tasks would require more technicians.

The table also includes a list of the necessary materials and their estimated costs (including cost of

acquisition). The total comes to 13058 person hours plus $174K of materials. The estimate of

prices for materials includes an allowance for acquisition cost. A nominal amount is also included

for travel to attend technical reviews, assumed to include a kick-off meeting and a final review. At

a nominal NASA rate of $150K per person year (2000 hours), this program would be priced

around $1.15 million.

The outcome of this program would be technology development, resulting in an operating MDS

unit with adequate capacity and writing speed to perform the HMC task. This unit could later be

employed in ground tests with rocket engines. The main technological development would be an

increase by about one order of magnitude in the recording rate above what is now available.

The most important feature would be the development of the four-source head, which will allow a

substantial increase in writing rate. This is one of the serious limiting factors in current state-of-

the-art optical MDS technology.

The testing would not include testing over the fuU range of environmental specifications, but would

include some limited environmental testing, including low-levd shock and vibration and testing to

show that it operates in all orientational attitudes.

• Lower Cost Alternative

We recognize that the level of effort required for the recommended program may be high.

Therefore, we have defined a program with reduced scope, which emphasizes only development of

the four-source head, the essential component for increased writing speed. The source would be

integrated into an existing commercial .5-1/4 inch optical MDS unit and would take advantage of the

predeveloped rotational drives, focus/tracking controls, etc.
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This demonsu'ationwould not be abletomeet thefullcapacityand speed requirementsforHMC,

but would serveas a demonswation oftechnologyadvancement inone criticalarea.

A work breakdown structureand schedule,along with estimatedlevelof effortby month foreach

task,isgiven inTable 17. The person hours are reduced substantially,from 13058 to8036. The

materialshave increasedslightly,to $201K, because of theneed toacquirea currentoperating

opticalMDS unit.At theassumed NASA rateof$150,000 per person year,thisprogram would

be priced around $0.80 million.

C-3a. Test Plan

The testprogram forthedemonstrationprogram would includea testplan definingthesystem test

program. Based on the demonstrationprogram definedabove,we envisionthe testprogram

definedbelow. System testactivitywould startwith a well definedtestplan. The testplan would

define:

• Objectives

• Performance goals

• Setup and required test equipment

• Test procedures

The test objectives would be to demonstrate mass stoarge performance through a functional test,

and confidence in ruggedness through limited environmental testing.

The functionaltestwould demonstrateread and writerates(Mbits/scc)and theread and writeerror

rates.Total capacitywould not be demonswated. Capacity can be verifiedtoa high degree of

confidence by writingtoa number of successivewacks,and scalingtheresultstothetotalnumber

of trackson the system. The ratetestswould requirewritingtoa number of successivetracks,and

acrossband boundaries.

The environmental tests would not be a full qualification test, as the demonstration unit will only be

a brassboard. However, we recommend limited environmental testing consisting of high

temperature, operating shock, and operating vibration. A full functional test procedure would be

performed while the unit is undergoing environmental stress.
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The test setup is shown in Figure 19. A minicomputer with a fast magnetic hard disk is used as a

data file source, test data acquisition and analysis computer, and test controller. The computer

must be able to access the data file on the hard disk and supply it to an output port to the item under

test at a rate higher than the write rate to be examined. This rate capability must be a sustained rate,

not a peak rate. This involves access time of the hard drive. Read signals wottld also be examined

with a transient recorder or storage oscilliseope.

The test procedure for the functional test involves fast generating a test data file. This test file can

be generated by pseudorandom methods, or from an old word processing text file. The file is then

dumped to the unit under test. Subsequently the data is then read from the disk. This read

procedure should be done several times, with the read output read to a different file each time. A

statistical analysis will then determine whether errors are read or write errors. Write errors will

show consistancy from file to file for a given byte. Bytes in error only in one of the fries can be

considered read errors. The read and write error rates are then determined.

This test will then be repeated under high temperature, shock and vibration. For the alternate

program the functional tests would be the same as for the baseline recommended program. The

environmental test, however, would consist of only a simplified operating shock test.

C-3d. SUMMARY

This document has described a recommended proof of concept demonstration for optical MDS

technology development. It is based on the use of two heads, each containing four laser sources

(either integrally or coupled through optical fibers), along with a two-sided banded 10-inch

WORM media. The most significant portion of the technology development is the head design and

fabrication, which will allow increase in writing rates above the current state of the art. This

program wifl yield an operating optical MDS unit with the required capacity and speed.

A work breakdown smacture and estimate of required effort for this development are included.

Also, a program of reduced content and scope, at lowered cost is also presented. This unit would

emphasize only the head development, integrating it into a current 5-1/4" WORM system. It would

not provide the total capacity nor data rate required, but would represent a substantial technology

development and would require fewer program resources.
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D. DISCUSSION OF RESULTS

We have generated a recommendation for optical disk technology as the best candidate for

technology development for HMC and MDS have generated a specific concept and approach for a

project to develop the technology. In this section we examine some of the issues that arise as a

result of these recommendations.

The firstissueinvolvesresourcesrequiredforgenerationof a completely new opticaldiskmemory

unit.The development ofnew opticaldisktechnologyrequiresa major long term investment.

Typicallycompanies which have brought new opticaldiskstomarket as commercial productshave

investedmany yearsand multiplemillionsofdollars.The program thatwe have recommended for

a proof-of-conceptdemonstrationrequires20 months and slightlyover $I million,but itis

intendedtodemonstratea singlekey advance inrecordingrate.Itwilldefinitelynot yielda

completed, space-qualifiedMDS system. NASA shouldrecognizethatthetotalpath toan

operatingMDS system foruse ina flightvehiclewillbe much longerand more expensive thanthe

projectplan and specificationfortechnologydevelopment, asoutlinedinthisreport.

A second issueinvolvesthefactthattheapplicationofMDS forrocketenginehealthmonitoring

and controlisa somewhat specializedapplication.Itrequiresvery largeamounts of datastorage

(3.3G bytes),whereas themarket definedformost ruggedized opticalmass memory unitsforuse

inaerospaceenvironments has envisionedsystems wath totalcapacityaround 1G byte. Moreover,

the lack of a significant driving force for rapid access is a signficant departure from the

requirements of most mass memories. These factors combine to make this application rather

different from the mainstream of optical disk applications.

Thus, when the time comes topurchase memory systems of thistypeforactualspace missions,the

unitcostmay be high. The potentialmanufacturersmay view theserequirementsas very

specializedand may perceivethatthetotalnumber of unitsthatcan be soldwillbe small.Thus, the

development costswould have tobe spreadover a relativelysmallnumber of units,drivingtheunit

cost up.

We have attemptedtominimize theeffectof thisissueby defininga technologydevelopment with

increasedversatilityand wider applicability.Specifically,we rejectedthe (IV system with a

singlespiraltrackas being of verynarrow application.We defineda system which could be

adapted so as tomeet requirementsforreasonablyshortaccesstime. Finally,we proposed a
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recommended technology develpment which emphasizes increased data rate. This technology wiLl

be of use in a variety of applications in a&lition to HMC.

A third issue involves the fact that the recomn_nded technology development leads in a direction

differentfi'omthemain thrustofthemomentum inopticaldisktechnology.The directionsin

which mostresearchand developmentinopticaldisktechnologyismoving aretowardrewritabi.fity

(perhapsatmost,I yearaway,withsome productsalreadyreachingthemarket)and towardhigher

packingdensitymade possibleby useofbluelasersources(perhaps3-5yearsaway,dependingon

developmentsinlasertechnology).

We have judged rewritability to be of minor importance for the HMC application. It would be

desirable in that it could aid the resetting of the memory after a mission. There would be no

physical removal of the media after a mission. One could simply erase the memory, probably in a

time of the order of 20 minutes, and be ready to begin again. Although this feature would be

desirable, it was not judged to be a critical factor, and in fact in Task II received a weighting factor

of 5.

We believe that the shif_ to a shorter laser wavelength will come in time. It will increase packing

density, total capacity and data rate. But it awaits the development of advances in laser technology,

either in blue semiconductor lasers, frequency-doubled semiconductor lasers or blue diode-pumped

solid state lasers. This is a development that is driven by other requirements also (for example,

high definition TV) and will probably occur over a period of several years. But it is not available

for a 1991 program and the large size of the investment that would be required makes tmamactive

for this project.

Despite the fact that there are good reasons for our choice of the specific technology development;

it does mean that the recommended program is not along the main direction that optical disk

manufacturers are moving. We have minimized the impact of this factor by recommending a

technology development which will be useful in any case. The writing head development with

increased data rate will be useful for either rewritable or unalterable otpical disks, and it will also be

compatible with systems incorporating shorter wavelength lasers.

D¢_Mt..p 112



E. CONCLUSIONS

Thisprogramon MDS technologyforrocketengineHMC applicationshad theobjectiveof

developinga recommendationanda programplanand specificationforthebestcandidate(s)for

technologydevelopmentformass datastorageforrocketenginehealthmonitoringand control.

The programhad four main tasks:

• Program management to ensure successful completion within cost and schedule constraints\

• A review of current data storage technology leading to development and prioritizafion of mass

datastorage requirements

• A survey and analysis of current and new mass data storage technologies, leading to a

recommendation for technology development

• Generation of a program plan and specification for the recommendation concept

This section will summarize the most important conclusions and recommendations of the program. "

With respect to the requirements, we estimate that MDS for HMC on a Right system like the space

shuttle would reuqire a total capacity of 3.3 G bytes (user available) and a recording rate of 23.2 M

bits/second. These numbers refer to a three engine vehicle. For an advanced vehicle with a

different number of engines, these numbers would scale linearly with the number of engines.

The recommendation for the best candidate for technology development is optical disk technology,

with emphasis on increasing the recording rate by about one order of magnitude above the current

state of the art. If sufficient funding is available, we recommend also an investment in the

development of digital paper technology.

As a specific recommendation for the technology development, we recommend a proof of concept.

demonstration that would have the following features:

• Banded WORM-type, two sided, 10 inch diameter media on glass substrate

• 780 nanometer laser diodes

• Spacing 1.3gm along track, 1.6pro between tracks

• Current SOA focus/tracking servo control

• 4 source heads (2 for writing, 2 for DRAW)
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This system would provide a proof of concept demonstration encompassing both the required

capacity and data rate.

We estimate that this development could be carried out over a 20 month period, with an investment

of 13058 person-hours of labor and $174K of materials.

As a lower cost alternative development, we suggest emphasizing the head development and

installing the head on a currently available optical disk memory unit. This would provide a

demonstration of technology for the required data rate, but not for the required total data capacity.

This develo )ment would require 8036 person-hours of labor and $201K of materials.
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APPENDIX - LIST OF ACRONYMS

Acronyms used in this report have been def'med at the fast plac_ where they are encountered. For

reference, a list of the acronyms is compiled in this appendix.

AI.S

CAV

CCD

CD-ROM

CLV

DRAW

EEPROM

EIU

FDM

FRAM

HMC

LED

M-O

MADS

bIDS

MMU

POC

PPS

RAM

ROM

SSME

TDM

VO0

VDL

WDM

WORM

Advanced launchsystem

Constantangnlarvelocity

Omrge..couplcddevice

Compact diskreadonlymemory

Constant linear velocity

Direct read after write

Electricallyerasableprogrammablereadonlymemory

Engineinterface unit

Frequency division multiplexer

Ferroelectric random access memory

Health monitoring and control

Light emitting didoe

Magneto-optical

Modular auxiliarydatasystem

Mass data storage

Mass memory unit

Proof of concept

Project plan and specification

Random access memory

Ready only memory

Space shuttle main engine

Time division multiplexing

Voltage control]exloscillator

Vertical Bloch line

Wavelength division multiplexing

Write once read mainly
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